首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
能取等号吗?     
函数 y=f(x)在 x=x_0处有极值,则它的导数 f′(x)在这点的函数值为零,即 f′(x_0)=0,反过来,函数 y=f(x)的导数在某点的函数值为零时,这点却不一定是函数的极值点.因此,我们必须具体问题具体分析.例1 已知 b>-1,c>0,函数 f(x)=x b 的图象与函数 g(x)=x~2 bx c 的图像相切.(1)求 b 与 c 的关系(用 c 表示 b)(2)设函数 F(x)=f(x)g(x)在(-∞, ∞)内有极值点,求 c 的取值范围.分析:(1)(略);(2)函数 F(x)=f(x)·g(x)在(-∞, ∞)内有极值点,即存在 x_0使F′(x_0)=0,亦即一元二次方程 F′(x)=0有实  相似文献   

2.
用导数法求函数的极值,是求极值基本方法,在解决这类问题时,如果对法则、定理一知半解或理解不透,很容易造成极值点的遗漏.可导函数y=f(x)在某一点x_0处取得极值的必要条件是这一点x_0的导数f′(x_0)=0.因此求可导函数y=f(x)的极值可以按照下列步骤进行: ①先求函数y=f(x)的导数f′(x); ②令f′(x)=0求得根x_0; ③在x_0附近左右两侧判断f′(x_0)的符号,左正右负为极大值点,左负右正为极小值点.  相似文献   

3.
刘开军 《职教论坛》2003,(20):62-62
充分条件、必要条件、充要条件是研究命题条件和结论的相互关系时常用的数学术语,下面在微分中说明这些条件的应用。一、充分条件假言判断“若A则B”为真,则称条件A是B的充分条件。简言之,“有此则必然,无此未必不然”。例1若函数y=f(x)在点x0有极值,且f(x0)存在,则函数y=f(x)在点x0的导数为零,即f’(x0)=0。分析很明显,当函数y=f(x)在点x0有极值且导数存在时,根据导数的几何意义,函数所表示的曲线在该点的切线平行于x轴,即有f’(x0)=0。但倒过来说,“若函数y=f(x)在点x0的导数为零,则函数y=f(x)在点x0有极值”就不一定成立了。因为使y=f(…  相似文献   

4.
<正>高中数学中导数像是一枚宝贵的工具解决着许多数学问题。学习过程中常常利用导数来求曲线的切线方程,讨论函数的单调性,极值与求最值问题等。一、利用导数求曲线的切线方程因为函数y=f(x)在x=x_0处的导数表示曲线在点P(x_0,f(x_0))处切线的斜率,所以曲线y=f(x)在点P(x_0,f(x_0))处的切线方程可求得。若已知曲线过点P(x_0,f(x_0)),求曲线过点P的切线,则需分点P(x_0,f(x_0))是切  相似文献   

5.
设y=f(x)为可导函数。①在某个区间内,如果f(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数,反之亦然。②函数f(x)在某点取得极值的充要条件是该点的导数为零且该点两侧的导数异号。③函数f(x)在点x_0处的导数f′(x_0)是曲线y=f(x)在点(x_0,f(x_0))处切线的斜率。运用上述性质可解决下面几类问题。  相似文献   

6.
<正>函数y=f(x)在点x0处的导数的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率。由导数的几何意义求切线的斜率,即是求切点处所对应的导数。因此,求曲线在某点处的切线方程,可以先求出函数在该点的导数,即为曲线在该点的切线的斜率,再用直线方程的点斜式写出切线方程,其步骤为:(1)求出函数y=f(x)在点x0处的导数f′(x0);(2)根据直线方程的点斜式,得切线方程  相似文献   

7.
利用拉格朗日数乘法求极值的方法是这样的:对给定二元函数z=f(x,y)和附加条件φ(x,y)=0,为寻找z=f(x,y)在附加条件下的极值点,先构造拉格朗日函数L(x,y)=f(x,y)+λφ(x,y),其中λ为参数.  相似文献   

8.
函数f(x)在x = x0 处取得极限的点称之为“极限点”,函数 f(x) 在点 x = x0 处连续的点称之为“连续点”,函数f(x)在x = x0处有导数的点称之为“可导点”,可导函数y = f(x)使f′(x0) = 0 的点 x0 叫做函数f(x)的“驻点”,函数f(x)在x = x0 处取得极值(极大值或极小值) 的点称之为“极值点”,函数f(x)在x = x0 处取得最值(最大值或最小值)的点称之为“最值点”.函数中这五类点很容易混淆,理清它们之间的关系对函数的“极限”和“导数”学习很有帮助.一、函数的“极限点”与“连续点”的关系当自变量x无限地趋近常数x0(但 x不等于x0)时,若…  相似文献   

9.
导数的应用非常广泛,在利用导数处理函数问题中,求参数取值范围是一类比较典型、比较重要的问题.1参数大于函数的最小值例1定义在R上的函数f(x)=ax3+bx2+cx+3,同时满足以下条件:1f(x)在(0,1)上是减函数,在(1,+])上是增函数;ofc(x)是偶函数;f(x)在x=0处的切线与直线y=x+2垂直.()求函数y=f(x)的解析式;(ò)设g(x)=4lnx-m,若存在x I[1,e],使g(x)相似文献   

10.
题目(2012年江苏高考18题)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+bx的两个极值点.(1)求a和  相似文献   

11.
为探索二元甬数z=f(x,y)方向导数的几何特征,使用代数分析和矢量分析的方法研究函数z=f(x,y)的方向导数.对于由方程z=f(x,y)给出的曲面S上的曲线C:z=f(x,y)且y=y0+tanα·(x-x0),设L是过曲面S上(x0,y0,f(x0,y0))点曲线C的切线,θ是有向直线L与矢量→/AB的夹角.那么二元函数z=f(x,y)在(x0,Y0,f(x0,y0))点沿方向AB的方向导数就是tanθ.  相似文献   

12.
1问题呈现问题1(2020全国Ⅱ卷文21)已知函数f(x)=2 ln x+1.(1)若f(x)≤2x+c,求c的取值范围;(2)设a>0,讨论函数g(x)=f(x)-f(a)x-a的单调性.问题2(2020天津卷20)已知函数f(x)=x 3+k ln x(k∈R),f′(x)为f(x)的导函数.(1)当k=6时,(i)求曲线y=f(x)在点(1,f(1))处的切线方程;(ii)求函数g(x)=f(x)-f′(x)+9 x的单调区间和极值.  相似文献   

13.
题目已知函数f(x)=lnx+kex(k为常数,e=2.71828…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.(Ⅰ)求k的值;(Ⅱ)求f(x)的单调区间;(Ⅲ)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数.证明:对任意x>0,g(x)<1+e-2.本题是2012年山东高考数学理科试题函数问题压轴题,在知识上主要考查函数的定义域、单调性,导数、导数的几何意义,不等式的证明;  相似文献   

14.
函数y=f(x)在点x0处的导数的几何意义就是曲线y=f(x)在点P(x0,y0)处的切线的斜率.导数的几何意义把函数的导数与曲线的切线联系在一起,使导数成为函数知识与解析几何知识交汇的一个重要载体.因此,用导数解决与切线有关的问题将是高考命题的一个热点.下面分类解析导数几何  相似文献   

15.
用二阶偏导数来判定函数f(x,y)在其驻点(x,y_0)处的极值,有时可能有判别式f_(xy)~2(x_0,y_0)-f_(xx)(X_0,y)·f_y(x,y_0)等于零的情况.这时,原来的判别法失效,从而需要作出进一步的考察.为此,本文特给出一种利用一般的高阶偏导数的判别方法.设函数f(x,y)在点(x,y_0)处可展开成n阶泰勒公式,并将其写成△f=P(h,k)+ε.式中P_n(h,k)=sum from m=1 to n(1/(m+1)!)(h((?)/(?)x)+(k(?)/(?)y))~(m 1)f(x,y_0);当ρ趋于零时ε趋于零.同时还设函数f(x,y)在点(x,y_0)处所有阶数不大于某个正整数N的偏导数都等于零,或在点(x,y_0)的某个邻域内所有阶数大于N+1的偏导数都恒等于零.那末,二元函数极值的高阶偏导数判别法可简单地归结为:若P_N(h,k)恒正或恒负,则f(x,y)在点(x_0,y_0)取得极值;若P_N(h,k)有正有负,则f(x,y)在点(x_0,y_0)处不取极值.  相似文献   

16.
一、试题呈现题目 (2012年高考数学江苏卷第18题)若函数y=f(x)在x=x0处取得极大值或极小值,则称x0为函数y=f(x)的极值点.已知a,b是实数,1和-1是函数f(x)=x3+ax2+ bx的两个极值点.(1)求a和b的值;(2)设函数g(x)的导函数g'(x)=f(x)+2,求g(x)的极值点;(3)设h(x)=f(f(x))-c,其中c∈[-2,2],求函数y=h(x)的零点个数.二、试题的分析及数形结合解法本题的第(1)、(2)问考查利用导数求解函数的极值,解答比较简单,这里我们不作讨论.第(3)问考查复合函数(实际上是迭代函数)的零点个数问题.对于第(3)问,命题组提供的参考答案是利用换元法,根据函数零点存在定理,判断函数y=h(x)的零点个数,整个解法缺乏直观,考生不容易想到,运算量也比较大.下面我们借助数形结合的思想对第(3)问进行解答,并依此解法把第(3)问的结论进行推广.  相似文献   

17.
函数在每年高考试题中都占有相当大的比重,从2004年高考题目中又可见到有拓宽函数命题领域的趋向.本文浅析高考函数命题的新趋势.一、三次函数闪亮登场由于导数的出现使三次函数问题呈现出新奇的亮点.【例1】已知函数f(x)=ax3-3x2-x-1在R上是减函数,求a的取值范围.解:由f(x)x∈R是减函数.故f′(x)=3ax2-6x-1<0当3ax2-6x-1<0]a<0且Δ=36 12a≤0∴a≤-3,即a∈(-∞,-3).【例2】已知函数f(x)=ax3 bx2-3x在x=±1处取得极值.(Ⅰ)讨论f(1)和f(-1)是函数f(x)的极大值还是极小值;(Ⅱ)过点A(0,16)作曲线y=f(x)的切线,求此切线方程.解:(Ⅰ)f′(x)=3ax…  相似文献   

18.
导数的应用     
导数的应用在近几年高考中是必考内容之一,导数的应用主要体现在以下几个方面: 求曲线的切线方程;讨论函数的单调性和极值;证明等式或不等式.一、在点P(x0,f(x0))处的切线的斜率,也就是说,曲线y=f(x)在点P(x0,  相似文献   

19.
导数是新教材第三册(选修Ⅱ)中的新添内容之一,教材主要介绍了导数在解题中判断函数单调及求函数极值与最值的应用,本文结合具体实例,就导数在解题中其它方面的几点应用作一下归纳,仅供读者参考.1判断函数图象例1设函数y=f(x)在定义域内可导,其图象如右图所示,则其导函数y=f′(x)的图象为()分析由y=f(x)的图象可以看出,当x<0时,y=f(x)是单调递增函数,由此可得:对任意x<0,f′(x)>0恒成立;所以可以排除(A)、(C);又因为x>0时,y=f(x)有两个极值点,所以x>0时,f′(x)=0有两个不等实根,且在两根左右两侧,f′(x)符号相反,因此答案应选(D).2化简例2…  相似文献   

20.
<正>导数是由速度问题和切线问题抽象出来的数学概念,又称变化率导数原理:设y是x的函数,记为y=f(x),则取其极值的条件为f′(x)=0,得x=t。将t代入原方程求极值即可。一、导数在经济学中的应用在数学中,通常利用导数来判断函数的单调性,求出函数的极值与最值,而其中求函数的最值与函数的最优化问题有着密切联系。生活中经常遇到求利润最大、用料最省、效率最低等问题,这些问题称为优化问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号