首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The penalty throw in water polo: a cinematographic analysis   总被引:1,自引:0,他引:1  
Three-dimensional (3-D) high-speed cinematography was used to record the penalty throw in water polo by six elite male (M) and six elite female (F) players. The direct linear transformation technique (DLT) was used in the 3-D space reconstruction from 2-D images recorded via laterally placed phase-locked cameras operating at 200 Hz. Five of the twelve subjects lifted the ball from underneath at the start of the throw whilst the remaining subjects opted for a rotation lift. As the ball was brought behind the head the females used very little hip and shoulder rotation compared to the male players so that four of the six female subjects were square on to the target at the rear point. At the completion of the backswing the wrist was flexed to a similar angle (M-162 degrees; F-158 degrees); the elbow angle showed significantly greater flexion for females (85 degrees) than males (107 degrees). During the forward swing, from rear point to release, the wrist joint of the female players flexed from a rear point angle of 158 degrees to 148 degrees at release. The wrist movement for male subjects was different from the females in that it flexed from 162 degrees to 147 degrees, 0.10 s prior to release and then extended to 159 degrees at palmar release before again flexing to 156 degrees at release. The amount of elbow extension during the forward swing was 48 degrees for both groups; however, the females actually released the ball with the forearm vertical (89 degrees) compared to the male forearm angle of 78 degrees. Maximum angular velocity of the wrist and elbow occurred at release for 9 of the 12 subjects. Both the wrist and elbow joints (F-148 degrees; M-156 degrees at wrist and F-126 degrees; M-148 degrees at elbow) demonstrated greater flexion at release in female subjects, compared with males. Maximum linear endpoint velocities for the forearm and hand segments occurred at ball release resulting in mean ball velocities of 19.1 m s-1 and 14.7 m s-1 for male and female subjects respectively.  相似文献   

2.
Abstract

Magnitudes and timings of kinematic variables have often been used to investigate technique. Where large inter-participant differences exist, as in basketball, analysis of intra-participant variability may provide an alternative indicator of good technique. The aim of the present study was to investigate the joint kinematics and coordination-variability between missed and successful (swishes) free throw attempts. Collegiate level basketball players performed 20 free throws, during which ball release parameters and player kinematics were recorded. For each participant, three misses and three swishes were randomly selected and analysed. Margins of error were calculated based on the optimal-minimum-speed principle. Differences in outcome were distinguished by ball release speeds statistically lower than the optimal speed (misses ?0.12 ± 0.10m · s?1; swishes ?0.02 ± 0.07m · s?1; P < 0.05). No differences in wrist linear velocity were detected, but as the elbow influences the wrist through velocity-dependent-torques, elbow–wrist angle–angle coordination-variability was quantified using vector-coding and found to increase in misses during the last 0.016s before ball release (P < 0.05). As the margin of error on release parameters is small, the coordination-variability is small, but the increased coordination-variability just before ball release for misses is proposed to arise from players perceiving the technique to be inappropriate and trying to correct the shot. The synergy or coupling relationship between the elbow and wrist angles to generate the appropriate ball speed is proposed as the mechanism determining success of free-throw shots in experienced players.  相似文献   

3.
Recreational tennis players tend to have higher incidence of tennis elbow, and this has been hypothesised to be related to one-handed backhand technique and off-centre ball impacts on the racket face. This study aimed to investigate for a range of participants the effect of off-longitudinal axis and off-lateral axis ball–racket impact locations on racket and forearm joint angle changes immediately following impact in one-handed tennis backhand groundstrokes. Three-dimensional racket and wrist angular kinematic data were recorded for 14 university tennis players each performing 30 “flat” one-handed backhand groundstrokes. Off-longitudinal axis ball–racket impact locations explained over 70% of the variation in racket rotation about the longitudinal axis and wrist flexion/extension angles during the 30 ms immediately following impact. Off-lateral axis ball–racket impact locations had a less clear cut influence on racket and forearm rotations. Specifically off-longitudinal impacts below the longitudinal axis forced the wrist into flexion for all participants with there being between 11° and 32° of forced wrist flexion for an off-longitudinal axis impact that was 1 ball diameter away from the midline. This study has confirmed that off-longitudinal impacts below the longitudinal axis contribute to forced wrist flexion and eccentric stretch of the wrist extensors and there can be large differences in the amount of forced wrist flexion from individual to individual and between strokes with different impact locations.  相似文献   

4.
The purpose of this study was to quantify ranges and speeds of movement, from shoulder external rotation to ball impact, in the tennis service actions of world class players. Two electronically synchronised 200 Hz video cameras were used to record 20 tennis players during singles competition at the Sydney 2000 Olympic games. Three-dimensional motion of 20 landmarks on each player and racquet were manually digitized. Based upon the mean values for this group, the elbow flexed to 104 degrees and the upper arm rotated into 172 degrees of shoulder external rotation as the front knee extended. From this cocked position, there was a rapid sequence of segment rotations. The order of maximum angular velocities was trunk tilt (280 degrees/s), upper torso rotation (870 degrees/s), pelvis rotation (440 degrees/s), elbow extension (1510 degrees/s), wrist flexion (1950 degrees/s), and shoulder internal rotation. Shoulder internal rotation was greater for males (2420 degrees/s) than females (1370 degrees/s), which may be related to the faster ball velocity produced by the males (50.8 m/s) than the females (41.5 m/s). Although both genders produced segment rotations in the same order, maximum upper torso velocity occurred earlier for females (0.075 s before impact) than for males (0.058 s). At impact, the trunk was tilted 48 degrees above horizontal, the arm was abducted 101 degrees and the elbow, wrist, and lead knee were slightly flexed. Male and female players should be trained to develop the kinematics measured in this study in order to produce effective high-velocity serves.  相似文献   

5.
Cricket bowling is traditionally thought to be a rigid-arm motion, allowing no elbow straightening during the delivery phase. Conversely, research has shown that a perfectly rigid arm through delivery is practically unattainable, which has led to rule changes over the past years. The current rule requires a bowler not to increase the elbow angle by more than 15°, thus requiring a measurement to confirm legality in “suspect” bowlers. The aims of this study were to evaluate whether the current rule is maintained over a range of bowlers and bowling styles, and to ascertain whether other kinematics measures may better differentiate between legal and suspect bowling actions. Eighty-three bowlers of varying pace were analysed using reflective markers and a high-speed (240 Hz) eight-camera motion analysis system in a laboratory. The change in elbow segment angle (minimum angle between the arm and forearm), the change in elbow extension angle with respect to the flexion–extension axis of a joint coordinate system, and the elbow extension angular velocity at ball release were measured. We found that bowlers generally bowled within a change in elbow extension angle of 15°. However, this limit was unable to differentiate groups of bowlers from those who were suspected of throwing in the past. Improved differentiation was attained using the elbow extension angular velocity at ball release. The elbow extension angular velocity at ball release may be conceptually more valid than the elbow extension angle in determining which bowlers use the velocity-contributing mechanisms of a throw. Also, a high value of elbow extension angular velocity at ball release may be related to the visual impression of throwing. Therefore, it is recommended that researchers and cricket legislators examine the feasibility of specifying a limit to the elbow extension angular velocity at ball release to determine bowling legality.  相似文献   

6.
This modelling study sought to describe the relationships between elbow joint kinematics and wrist joint linear velocity in cricket fast bowlers, and to assess the sensitivity of wrist velocity to systematic manipulations of empirical joint kinematic profiles. A 12-camera Vicon motion analysis system operating at 250 Hz recorded the bowling actions of 12 high performance fast bowlers. Empirical elbow joint kinematic data were entered into a cricket bowling specific “Forward Kinematic Model” and then subsequently underwent fixed angle, angular offset and angle amplification manipulations. A combination of 20° flexion and 20° abduction at the elbow was shown to maximise wrist velocity within the experimental limits. An increased elbow flexion offset manipulation elicited an increase in wrist velocity. Amplification of elbow joint flexion–extension angular displacement indicated that, contrary to previous research, elbow extension range of motion and angular velocity at the time of ball release were negatively related to wrist velocity. Some relationships between manipulated joint angular waveforms and wrist velocity were non-linear, supporting the use of a model that accounts for the non-linear relationships between execution and outcome variables in assessing the relationships between elbow joint kinematics and wrist joint velocity in cricket fast bowlers.  相似文献   

7.
The purpose of this study was to examine the relationship between the upper limb anthropometric dimensions and a history of dominant upper limb injury in tennis players. Dominant and non-dominant wrist, forearm, elbow and arm circumferences, along with a history of dominant upper limb injuries, were assessed in 147 male and female players, assigned to four groups based on location of injury: wrist (n = 9), elbow (n = 25), shoulder (n = 14) and healthy players (n = 99). From anthropometric dimensions, bilateral differences in circumferences and in proportions were calculated. The wrist group presented a significant bilateral difference in arm circumference, and asymmetrical bilateral proportions between wrist and forearm, as well as between elbow and arm, compared to the healthy group (6.6 ± 3.1% vs. 4.9 ± 4.0%, P < 0.01; ?3.6 ± 3.0% vs. ?0.9 ± 2.9%, P < 0.05; and ?2.2 ± 2.2% vs. 0.1 ± 3.4%, P < 0.05, respectively). The elbow group displayed asymmetrical bilateral proportions between forearm and arm compared to the healthy group (?0.4 ± 4.3% vs. 1.5 ± 4.0%, P < 0.01). The shoulder group showed significant bilateral difference in elbow circumference, and asymmetrical bilateral proportions between forearm and elbow when compared to the healthy group (5.8 ± 4.7% vs. 3.1 ± 4.8%, P < 0.05 and ?1.7 ± 4.5% vs. 1.4 ± 4.3%, P < 0.01, respectively). These findings suggest that players with a history of injury at the upper limb joint present altered dominant upper limb proportions in comparison with the non-dominant side, and such asymmetrical proportions would appear to be specific to the location of injury. Further studies are needed to confirm the link between location of tennis injury and asymmetry in upper limb proportions using high-tech measurements in symptomatic tennis players.  相似文献   

8.
The aim of this study was to investigate the throwing velocity and kinematics of overarm throwing in team handball of elite female and male handball players. Kinematics and ball velocity of a 7 metre-throw in eleven elite male (age 23.6 ± 5.2 yr, body mass 87.0 ± 6.8 kg, height 1.85 ± 0.05 m) and eleven elite female (age 20.3 ± 1.8 yr, body mass 69.9 ± 5.5 kg, height 1.75 ± 0.05 m) team handball players were recorded. The analysis consisted of maximal joint angles, angles at ball release, maximal angular velocities of the joint movements, and maximal linear velocities of the distal endpoints of segments and their timing during the throw. The ball release velocity of the male handball players was significantly higher than the females (21.1 vs. 19.2 m · s(-1); p < 0.05). No major differences in kinematics were found, except for the maximal endpoint velocities of the hand and wrist segment, indicating that male and female handball players throw with the same technique. It was concluded that differences in throwing velocity in elite male and female handball players are generally not the result of changes in kinematics in the joint movements.  相似文献   

9.
This study sought to identify kinematic differences in finger-spin bowling actions required to generate variations in ball speed and spin between different playing groups. A 12-camera Vicon system recorded the off-spin bowling actions of six elite and 13 high-performance spin bowlers, and the “doosra” actions of four elite and two high-performance players. Forearm abduction and fixed elbow flexion in the bowling arm were higher for the elite players compared with the high-performance players. The elite bowlers when compared with the high-performance players delivered the off-break at a statistically significant higher velocity (75.1 and 67.1 km/hr respectively) and with a higher level of spin (26.7 and 22.2 rev/s respectively). Large effect sizes were seen between ball rotation, pelvic and shoulder alignment rotations in the transverse plane. Elbow extension was larger for elite bowlers over the period upper arm horizontal to ball release. Compared to the off-break, larger ranges of shoulder horizontal rotation, elbow and wrist extension were evident for the “doosra”. Furthermore, the “doosra” was bowled with a significantly longer stride length and lower ball release height. Although not significantly different, moderate to high effect size differences were recorded for pelvis rotation, elbow extension and elbow rotation ranges of motion.  相似文献   

10.
In order to get bounce and movement seam bowlers need to bowl the ball “into” the pitch. Standard deliveries by elite players are typically projected at around 7° below horizontal. In contrast, young players currently often need to release the ball almost horizontally in an effort to get the ball to bounce close enough to the batter. We anticipated that shortening the pitch could be a simple way to help young bowlers to release the ball at a better angle and with more consistency. Twenty county or best in club age group under 10 and under 11 seam bowlers were analysed bowling indoors on two different pitch lengths. They were found to project the ball on average 3.4° further below horizontal on a 16 yard pitch compared with a 19 yard pitch, while ball speed and position at release changed negligibly. Pitch length did not affect the consistency of the release parameters. The shorter pitch led to a ball release angle closer to that of elite bowlers without changing release speed, and this should enable players to achieve greater success and develop more variety in their bowling.  相似文献   

11.
Cricket     
The laws of bowling in cricket state ‘a ball is fairly delivered in respect of the arm if, once the bowler's arm has reached the level of the shoulder in the delivery swing, the elbow joint is not straightened partially or completely from that point until the ball has left the hand’. Recently two prominent bowlers, under suspicion for transgressing this law, suggested that they are not ‘throwing’ but due to an elbow deformity are forced to bowl with a bent bowling arm. This study examined whether such bowlers can produce an additional contribution to wrist/ball release speed by internal rotation of the upper arm. The kinematics of a bowling arm were calculated using a simple two‐link model (upper arm and forearm). Using reported internal rotation speeds of the upper arm from baseball and waterpolo, and bowling arm kinematics from cricket, the change in wrist speed was calculated as a function of effective arm length, and wrist distance from the internal rotation axis. A significant increase in wrist speed was noted. This suggests that bowlers who can maintain a fixed elbow flexion during delivery can produce distinctly greater wrist/ball speeds by using upper arm internal rotation.  相似文献   

12.
ABSTRACT

Knowledge of the kinematic differences that separate highly skilled and less-skilled squash players could assist the progression of talent development. This study compared trunk, upper-limb and racket kinematics between two groups of nine highly skilled and less-skilled male athletes for forehand drive, volley and drop strokes. A 15-camera motion analysis system recorded three-dimensional trajectories, with five shots analysed per participant per stroke. The highly skilled group had significantly (p < 0.05) larger forearm pronation/supination range-of-motion and wrist extension angles at impact than the less-skilled. The less-skilled group had a significantly more “open” racket face and slower racket velocities at impact than the highly skilled. Rates of shoulder internal rotation, forearm pronation, elbow extension and wrist flexion at impact were greater in the drive stroke than in the other strokes. The position of the racket at impact in the volley was significantly more anterior to the shoulder than in the other strokes, with a smaller trunk rotation angular velocity. Players used less shoulder internal/external rotation, forearm pronation/supination, elbow and wrist flexion/extension ranges-of-motions and angular velocities at impact in the drop stroke than in the other strokes. These findings provide useful insights into the technical differences that separate highly skilled from less-skilled players and provide a kinematic distinction between stroke types.  相似文献   

13.
Abstract

In the sport of cricket the objective of the “no-ball” law is to allow no performance advantage through elbow extension during ball delivery. However, recently it has been shown that even bowlers with actions that are considered within the law show some elbow extension. The objective of this study was to investigate: [1] the effect of elbow orientation during anatomical landmark digitisation and [2] the choice of upper arm tracking cluster on the measurement of elbow angles during cricket bowling.

We compared the mean elbow angles for four different elbow postures; with the joint flexed at approximately 130°, 90°, in full extension and with the elbow flexed with the humerus internally rotated, and two upper arm clusters in two different situations: [1] during a controlled movement of pure flexion-extension and [2] during cricket bowling. The digitised postures of the anatomical landmarks where the elbow was extended and at 90° of flexion were more repeatable than the other two postures. The recommendation of this study when analysing cricket bowling is to digitise the humeral epicondyles with the joint flexed at 90°, or in full extension, and to relate their positions to an upper arm cluster fixed close to the elbow.  相似文献   

14.
The players' ability to achieve the greatest distance in kicking is determined by their efficiency in transferring kinetic energy from the body to the ball. The purpose of this study was to compare the kinetics and kinematics of the plant leg position between male and female collegiate soccer players during instep kicking. Twenty-three soccer players (11 males and 12 females) were filmed in both the sagittal and posterior views while performing a maximal instep kick. Plant leg kinetic data were also collected using an AMTI 1000 force platform. There were no significant differences between the sexes in plant leg position, but females had significantly greater trunk lean, plant leg angle, and medial-lateral ground reaction force than the males. Males showed higher vertical ground reaction forces at ball contact, but there were no significant differences in ball speed at take-off between the sexes. Ball speed at take-off was inversely related to peak anterior–posterior ground reaction force ( ? 0.65). The anatomical differences between the sexes were reflected in greater trunk lean and lower leg angle in the females.  相似文献   

15.
Many sports associated with anterior cruciate ligament (ACL) injury require athletes attend to a ball during participation. We investigated effects of attending to a ball on lower extremity mechanics during a side-cut maneuver and if these effects are consistent for males and females. Sagittal and frontal plane hip and knee kinematics and joint moments were measured during side-cut maneuvers in 19 male and 19 female National Collegiate Athletic Association division III basketball players. Participants also experienced two side-cut conditions that required attention to a ball. Our results did not indicate that the effect of attention varies with gender. However, during side-cut conditions while attending to a ball, internal knee adductor moment was 20% greater (p = 0.03) and peak knee flexion angle was 4° larger (p < 0.01). Females demonstrated 5° less hip flexion (p = 0.046), 12° less knee flexion (p < 0.01), and 4° more knee abduction (p = 0.026) at initial contact during all side-cut conditions than males. Attention to a ball may affect lower extremity mechanics relevant to ACL injury. The validity of laboratory studies of lower extremity mechanics for sports that include attention to a ball may be increased if participants are required to attend to a ball during the task.  相似文献   

16.
Tennis     
The study investigated differences in the one‐ (SH) and two‐handed (DH) backhands when hit flat, across‐court (AC) and down‐the‐line (DL), and with heavy topspin DL (TDL). The ability to disguise each of these backhands when hitting the above strokes was also assessed. Eighteen college‐level male tennis players, identified as having a high performance topspin SH (n = 6) or DH (n = 12) backhand drive, participated in the study. Players were required to hit three AC, DL and TDL backhands from the baseline with their preferred technique, while being filmed with two high‐speed video cameras operating at 200 Hz. The highest horizontal velocity backhand for each stroke was analysed. Results indicated that the sequential coordination of five body segments (hips, shoulder, upper arm, forearm, and hand/racquet rotations) was required for the execution of the SH stroke. The same number of segments were generally coordinated in the DH stroke (hips, shoulders, and varying degrees of upper arm and forearm rotations followed by hand/racquet movement). Mature players produced comparable racquet horizontal velocities 0.005 s prior to impact using either the SH or DH backhand technique. The SH backhand was characterised by a more rotated shoulder alignment than the DH stroke (SH: 119.1°; DH: 83.4°) at the completion of the backswing. At impact the ball was impacted further in front (SH: 0.59 m; DH: 0.40 m) and a similar distance to the side of the body (SH: 0.75 m; DH: 0.70 m). Players using the DH backhand technique delayed the horizontal acceleration of the racquet towards the ball (SH: 0.13 s; DH: 0.08 s prior to impact) and thus were capable of displaying a similar hitting motion closer to impact than players with a SH technique.  相似文献   

17.
Cricket bowling is traditionally thought to be a rigid-arm motion, allowing no elbow straightening during the delivery phase. Conversely, research has shown that a perfectly rigid arm through delivery is practically unattainable, which has led to rule changes over the past years. The current rule requires a bowler not to increase the elbow angle by more than 15 degrees, thus requiring a measurement to confirm legality in "suspect" bowlers. The aims of this study were to evaluate whether the current rule is maintained over a range of bowlers and bowling styles, and to ascertain whether other kinematics measures may better differentiate between legal and suspect bowling actions. Eighty-three bowlers of varying pace were analysed using reflective markers and a high-speed (240 Hz) eight-camera motion analysis system in a laboratory. The change in elbow segment angle (minimum angle between the arm and forearm), the change in elbow extension angle with respect to the flexion-extension axis of a joint coordinate system, and the elbow extension angular velocity at ball release were measured. We found that bowlers generally bowled within a change in elbow extension angle of 15.5 degrees. However, this limit was unable to differentiate groups of bowlers from those who were suspected of throwing in the past. Improved differentiation was attained using the elbow extension angular velocity at ball release. The elbow extension angular velocity at ball release may be conceptually more valid than the elbow extension angle in determining which bowlers use the velocity-contributing mechanisms of a throw. Also, a high value of elbow extension angular velocity at ball release may be related to the visual impression of throwing. Therefore, it is recommended that researchers and cricket legislators examine the feasibility of specifying a limit to the elbow extension angular velocity at ball release to determine bowling legality.  相似文献   

18.
This study investigates how elbow hyperextension affects ball release speed in fast bowling. A two-segment planar computer simulation model comprising an upper arm and forearm + hand was customised to an elite fast bowler. A constant torque was applied at the shoulder and elbow hyperextension was represented using a damped linear torsional spring at the elbow. The magnitude of the constant shoulder torque and the torsional spring parameters were determined by concurrently matching three performances. Close agreement was found between the simulations and the performances with an average difference of 3.8%. The simulation model with these parameter values was then evaluated using one additional performance. Optimising ball speed by varying the torsional spring parameters found that elbow hyperextension increased ball release speed. Perturbing the elbow torsional spring stiffness indicated that the increase in ball release speed was governed by the magnitude of peak elbow hyperextension and the amount that the elbow recoils back towards a straight arm after reaching peak elbow hyperextension. This finding provides a clear understanding that a bowler who hyperextends at the elbow and recoils optimally will have an increase in ball speed compared to a similar bowler who cannot hyperextend. A fast bowler with 20° of elbow hyperextension and an optimal level of recoil will have increased ball speeds of around 5% over a bowler without hyperextension.  相似文献   

19.
The aim of the study was to determine if sex differences exist in the key elbow and wrist joint injury risk factors during different cartwheel (CW) and round-off (RO) techniques performed by young male and female artistic gymnasts. Sixteen active young gymnasts (8 males and 8 females) performed 30 successful trials of CW and RO with three different hand positions (parallel (10), T-shape (10) and reverse (10)). Synchronised kinematic and kinetic data were collected for each trial. Two-way repeated measures ANOVA (3 × 2, technique × sex) and effect-sizes (ES) were used for statistical analysis. In conclusion, female gymnasts exhibited greater normalised peak vertical ground reaction forces (VGRF), elbow and wrist compression forces and elbow internal adduction moments during CW and RO skills compared with male gymnasts. In both sexes, the parallel and reverse techniques increased peak VGRF, elbow and wrist compression forces and the elbow internal adduction moment. Increased elbow flexion resulted in decreased peak VGRF, elbow compression forces and elbow internal adduction moment. Injury risk factors including elbow extension and internal adduction moment with axial compression force suggest that a CW and RO in reverse and parallel techniques can be hazardous especially for young female gymnasts.  相似文献   

20.
Wrist injuries are frequently observed after falls in snowboarding. In this study, laboratory experiments mimicking forward and backward falls were analysed. In six different falling scenarios, participants self-initiated falls from a static initial position. Eighteen volunteers conducted a total of 741 trials. Measurements were taken for basic parameters describing the kinematics as well as the biomechanical loading during impact, such as impact force, impact acceleration, and velocity. The effective mass affecting the wrist in a fall also was determined. The elbow angle at impact showed a more extended arm in backward falls compared to forward falls, whereas the wrist angle at impact remained similar in forward and backward falls. The study results suggest a new performance standard for wrist guards, indicating the following parameters to characterize an impact: an effective mass acting on one wrist of 3–5 kg, an impact angle of 75° of the forearm relative to the ground, and an impact velocity of 3 m/s.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号