首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
关于双心四边形的一个命题   总被引:1,自引:0,他引:1  
张赟  张云 《中等数学》2006,(3):21-21
命题 在双心四边形ABCD中,若其外接圆半径为R,面积为S,内切圆半径为r,则  相似文献   

2.
<正>众所周知,在△ABC中,若R、r分别为其外接圆和内切圆半径,则有R≥2r.这是著名的Euler不等式,本文给出其三个仅与边相关的最新加强.命题1在△ABC中,a、b、c为其三边长,R、r分别为其外接圆和内切圆半径,则有R/2r≥(b~2+c~2)/2bc.(1)证明记S为△ABC面积,由熟知的三角恒等式abc=4RS及S=(1/2)r(a+b+c)知,  相似文献   

3.
文[1]将欧拉(Ewler)不等式向双圆n边形(既有外接圆又有内切圆的凸n边形)推广,得到:Rcos≥r(1)近期,文[2]和[3]从“长度”出发,分别给出了不等式(1)的加强形式.本文拟建立它的一种新的面积隔离,即有定理设双圆n边形的面积、外接圆半径、内切圆半径分别为S、R、r,则当且仅当n边形是正n边形时不等式(2取)等号.证如图1,I为双圆n边形A_1A_2…A_n的内切圆圆心,令A_iA(i+1)之长为a_i(i=1,2,……,n;A_(n l)≡A_1).考虑到y=ctgx在(0,)上是下凸函数,且,从而由下凸函数的琴生不等式得:因此,有:下面分几种情形来证…  相似文献   

4.
若三角形的外接圆半径为R,内切圆半径为r,面积为SΔ,则SΔ≤3(√3)/2Rr.  相似文献   

5.
《数学通报》2001年第1期给出的问题1293是“若三角形的外接圆半径为R,内切圆半径为r,面积为S,求证:Rr≥2√3/9S″.  相似文献   

6.
1765年,数学泰斗欧拉(L.Euler)首先发现:任意一个三角形的外接圆半径R、内切圆半径r与其两圆心距d恒满足关系R~2=d~2 2Rr, ①从而由d~2≥0,得R≥2r. ② 这就是众所周知的欧拉不等式. 1798年,欧拉的学生富斯(N·Fuss)又证明:同时有外接圆和内切圆的四边形,其外接圆半径R,内切圆半径r与其两圆心距d恒满足关系(1/(R d)~2) 1/(R-d)~2=1/r~2,R~2=d~2-r~2 r(r~2 4R~2)~(1/2).据此,由d~2≥0即可得R≥(2r)~(1/2). ③ 这便是所谓的富斯不等式. 1988年,刘健将②、③推广成:设双圆n边形(既有外接圆又有内切圆的n边形)的外接圆半径为R,内切圆半径为r,则R≥rsecπ/n. ④ 近年来,我国学者还相继给出④的多种证法,并有人将其延拓到一般多边形的情形. 我们追寻先达时贤之笔迹,通过深入分析研究发现,④可以进一步加强为  相似文献   

7.
定理设△ABC边为n,6,c,外接圆半径为尺,垂足△DEF的内切圆半径为r,则r=α^2+b^2+c^2-8R^2/4R.  相似文献   

8.
设P为正n边形A_1A_2…A_n外接圆上任意一点,R为这正n边形外接圆半径,则P到各顶点距离平方和为定值2nR~2,即 sum from i=1 to n PA_i~2=2nR~2 (1) 本文试对这一有趣的定值问题作适当引伸,得到一些更一般的结论。定理1 设正n边形A_1A_2…A_n的中心为O,半径为R,P是以O为圆心以r为半径的圆  相似文献   

9.
欧拉不等式是指:若三角形的内切圆和外接圆半径分别为r和R,则R≥2r。将此不等式推广到四边形中,有: 定理设双圆四边形(既有内切圆又有外连圆的四边形的内切圆和外接圆的半径分别为r和R,则 R≥2~(1/2)r ①分析如图,设ABCD为双圆四边形,边长依次为a、b、c、d,令AC=u,则 u=((ac bd)(ad bc)/(ab cd))~(1/2) (参见[3]) 设ABCD的面积为△,则△A=rs,其中s=1/2(a b c d)∴r=△/s。  相似文献   

10.
文[1]证明了如下定理: 如图1,△ABC的外接圆圆心为O,内切圆圆心为I,且内切圆分别切三边于D,E,F,△DEF的重心为M,则O,I,M三点共线.若△ABC的外接圆的半径为R,内切圆的半径为r,  相似文献   

11.
本刊文[1]证明了关于圆内接正多边形的下述性质:正 n(n≥3)边形外接圆上任一点到该正 n 边形各顶点距离的平方和为2nR~2(其中 R 是外接圆半径).文[1]的证明比较繁复,今简证如下:在平面直角坐标系中,设任意给定的一个正 n 边形A_0A_1A_2…A_(n-1)各顶点的坐标是 A_k(Rcos(2kπ/n),Rsin(2kπ/n))(k=0,1,2,…,n-1)其外接圆上任意取定的一点 P的坐标是 P(Rcosθ,Rsinθ).显然点 P 到正 n 边形各顶点距离的平方和 S 是  相似文献   

12.
设△ABC的三边长、外接圆半径、内切圆半径、半周长与面积分别为a,b,c,R,r,s,Δ,∑表示循环求和.引理1在△ABC中,有Δ=abc/4R=sr=s(s-a)(s-b)(s-c);∑ab=s2+4Rr+r2;sin A/2=(s-b)(s-c)/bc.  相似文献   

13.
李新 《中学理科》2006,(1):12-12
命题:设△ABC三边的长为a、b、c,对应的中线长分别为ma、mb、mc,对应的高的长分别为ha、hb、hc,R、r、l、S分别表示为△ABC的外接圆半径、内切圆半径、半周长和面积.则有  相似文献   

14.
在本文中约定a,b,c为ΔABC的三边,s为半周长,R,r分别为ΔABC的外接圆半径与内切圆半径.1916年,M.Petrovic建立了如下涉及三角形三边的不等式[1,p.8]:1/3≤a2+b2+c2/(a+b+c)2<1/22000年,朱杏华[2]将不等式(1)推广到了n维单形.2008年,李华和张[5]将不等式(1)推广到了n边形.2009年,武爱民[4]对不等式(1)作了指数推广.其实早在  相似文献   

15.
文[1]给出了一个涉及垂足三角形内切圆半径的恒等式:设△DEF是锐角△ABC的垂足三角形,且BC=a,CA=b,AB=c,p=(a b c)/2,△ABC的面积、外接圆、内切圆半径分别为?、R、r,若△AEF、△BDF、△CDE的内切圆半径依次为rA、rB、rC,则cot cot cotA2B2C2r A r B rC=?r??R.(1)本文给出(1)式  相似文献   

16.
设三角形的内切圆和外接圆的半径分别为r和R,则2r≤R。对于上述著名的欧拉不等式,本文给出它的一个链,同时还给出欧拉不等式在四边形中的推广及其链。一、欧拉不等式的链定理1 设三角形的内切圆和外接圆的半径分别为r和R,三边为a、b、c,则2r≤(abc/(a+b+c))~(1/2)≤R。  相似文献   

17.
△ABC的内切圆、外接圆半径分别为r,R,大家知道有著名的Euler公式:R≥2r. 上述公式证明方法有多种,本文将给出△ABC中内切圆代换下的证明. 为此,我们先给出有关内切圆的一些基本知识点,这些在不等式证明中时是极其有用的. 如图1,设a=x+y,b=y+z,c =z + x,△ABC的内切圆、外接圆半径分别为r,R,面积为S,半周长p=a+b+c/2=x+y+z,由海伦公式知S=√p(p-a)(p-b)(p-c) =√xyz(x+y+z),注意到S=pr=a+b+c/2 r,故r=S/P=√xyz/x+y+z,而S=1/2absinC=abc/4R,故R=abc/4S=(x+y)(y+z)(z+x)/4√xyz(x+y+z),故=R/2r=(x+y)(y+z)(z+x)/8xyz≥8xyz/8xyz=1,故R≥2r.  相似文献   

18.
1767年,伟大的数学家Euler建立了如下一个著名的不等式: 若三角形的外接圆的半径为R,内切圆的半径为r,则R≥2r.  相似文献   

19.
加拿大数学杂志Crux Mathematicorum 2018年第8期4380问题引起笔者关注,本文拟给出该问题的一个加强.4380问题设a,b,c为ΔABC三边,r,R分别为内切圆半径、外接圆半径,求证a^2tanA/2+b^2tanB/2+c^2tanC/2≤3√3R^3(R-r)/2r^2.(1)4380问题的解答详见2019年第6期.  相似文献   

20.
平面几何中,有一个欧拉不等式: 设△ABC的外接圆和内切圆的半径分别是R和r,则 R≥2r。其中等号当且仅当△ABC是正三角形时成立。这个结论在三维空间中可推广如下: 设四面体A_1—A_2A_3A_4(简记四面体A,下同)的外接球和内切球的半径分别是R和r,则  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号