首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
点差法设出直线与圆锥曲线的两个交点A(x1,y1),B(x2,y2),将两点的坐标分别代入圆锥曲线方程,将所得两式作差.适用范围已知线段AB的中点,求直线AB(的斜率);已知直线  相似文献   

2.
"点差法"是圆锥曲线中的常见方法,如果能恰当使用,可以降低运算量,优化解题过程.我们对"点差法"的掌握也有境界高低之分,特举以下几例,谈谈点差法在应用中的三重境界.襛术:熟练应用,解决中点和斜率相关问题1.点差法的步骤设直线与圆锥曲线的交点坐标为A(x1,y1),B(x2,y2),将A,B坐标代入圆锥曲线方程,两式作差后分解因式,得到一个与弦的中点和斜率有关的式子,我们称之为"点差法".应用"点差法"的常见题型有:求中点弦方程、求弦中点轨迹、垂直  相似文献   

3.
在解答平面解析几何中直线与圆锥曲线位置关系时,若设直线F(x,y)=0与圆锥曲线G(x,y)=0的交点A、B(弦的端点)坐标为(x1,y1)、(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法".  相似文献   

4.
<正>在求解圆锥曲线一类问题时,若题目中给出直线与圆锥曲线相交被截得线段中点坐标的时候,把直线和圆锥曲线的两个交点坐标代入圆锥曲线的方程,然后将两个等式作差,得到一个与弦的中点坐标和斜率有关的式子,从中求出直线的斜率,然后利用中点求出直线方程。通常我们将与圆锥曲线的弦的中点有关的问题称之为圆锥曲线的"中点弦问题",把这种代点作差的方法称为"点差法"。"中点弦问题"如果能适时运用点差法,  相似文献   

5.
在处理直线与圆锥曲线相交形成的弦中点的有关问题时,我们经常用到如下解法:设弦的两个端点坐标分别为(x1,y1)、(x2,y2),代人圆锥曲线得两方程后相减,得到弦中点坐标与弦所在直线斜率的关系,然后加以求解,这即为“点差法”,此法有着不可忽视的作用,其特点是巧代斜率.本文列举数例,以供参考.  相似文献   

6.
<正>点差法就是在求解圆锥曲线问题时,利用直线和圆锥曲线的两个交点,把交点代入圆锥曲线的方程并作差,得到一个与直线的斜率以及中点有关的式子,然后再利用学习过的相关知识解决问题的方法。熟练灵活地运用点差法可以帮助我们更好更快地解题。在圆锥曲线中,与弦中点有关的问题,通常都可以采用点差法求解。一、求参数范围例1若拋物线y=ax2-1上总存在两点关于直线x+y=0对称,则实数a的取值  相似文献   

7.
定理已知圆锥曲线的准线与x轴相交于点E,过相应焦点F的直线与圆锥曲线相交于A、B两点,BC//x轴交准线于C点,则AC经过线段EF的中点.证明(1)若圆锥曲线为抛物线,不妨设抛物线的方程为2y=2px(p>0).当直线AB的斜率不存在时,显然定理成立.当直线AB的斜率存在时,可设直线AB的方程为:y=  相似文献   

8.
<正>在解析几何圆锥曲线这一章中,我们常常会碰到一类与弦中点有关的问题,对于这一类问题常用的解法是"点差法".所谓点差法就是将弦的两端点A(x1,y1),B(x2,y2)代入圆锥曲线方程,然后将所得的两式相减,再因式分解,求得弦的斜率,其中用到的公式有  相似文献   

9.
直线和圆锥曲线的位置关系中,涉及弦的问题特别多,其中以弦的中点问题最为丰富多彩.中点弦问题是中学数学的一类重要问题,解决圆锥曲线的中点弦问题,有以下几种策略.1“设而不求”的策略例1已知P(1,1)为椭圆22194x+y=内一定点,过点P的弦AB被点P平分,求弦AB所在直线的方程.分析常规思路设直线AB的斜率为k由方程组求A、B的坐标,由AB的中点坐标建立k的方程求k,但注意到弦的中点坐标公式x=12(x1+x2),y=12(y1+y2),故可用韦达定理,绕过求交点的步骤.设所求直线的方程y=k(x?1)+1,并过A(x1,y1),B(x2,y2)两点,由方程组:22(1)1,1,94y k xx y????…  相似文献   

10.
中点弦问题是解析几何中的重点、热点问题.解圆锥曲线的中点弦问题,很多学生习惯于用所谓“点差法”:首先设出弦的两端点坐标,然后代人圆锥曲线方程相减,得到弦中点的坐标与所在直线的斜率的关系,从而求出直线方程.但是,有时候符合条件的直线是不存在的,这时使用“点差法”便会走入“误区”.下面问题中便有学生经常掉入“陷阱”.题目:已知双曲线 x~2-y~2/2-1,问是否存在直线 l,使 M(1,1)为直线 l 被双曲线所截弦 AB 的中点.若存在,求出直线 l 的方程;若不存在请说明理由.错误解法1:(点差法)设直线与双曲线两交点 A、B 的坐标分别为(x_1,y_1),(x_2,y_2),M 点的坐标为(x_M,y_M).由题设可知直  相似文献   

11.
对平面上点A、B,若线段AB之中点P的坐标是P(x,y),从而可设A、B坐标分别为(x-Δx,y-Δy)及(x Δx,y Δy),其中的Δx,Δy∈R。这种设元方式我们不妨称之“增量设元”,为此显然有两个重要的结论:(1)当Δx≠0时,Δx/Δy表示A、B所在直线的斜率。(2)|AB|=2(Δ~2x Δy~(2±1))~(1/2)。本文通过数例浅谈这种手段在解几中的巧妙运用。一、解圆锥曲线上有关中点弦问题例1 已知椭圆x~2/16 y~2/4=1和定点  相似文献   

12.
与圆锥曲线的弦的中点有关的问题,我们称之为圆锥曲线的中点弦问题.解圆锥曲线的中点弦问题的一般方法是:联立直线和圆锥曲线的方程,借助于一元二次方程的根的判别式、根与系数的关系、中点坐标公式及参数法求解.若设直线与圆锥曲线的交点(弦的端点)坐标为A(x1,y1)、B(x2,y2),将这两点代入圆锥曲线的方程并对所得两式作差,得到一个与弦AB的中点和斜率有关的式子,可以大大减少运算量.我们称这种代点作差的方法为"点差法".一、以定点为中点的弦所在直线的方程例1过椭圆x2/16+y2/4=1内一点M(2,1)引一条弦,使弦被M点平分,求这条弦所在直线的方程.  相似文献   

13.
于仁 《数学教学研究》2012,31(9):40-41,44
在今年高三数学圆锥曲线一章的复习过程中有这样两道题目.题目1如图1,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(Ⅰ)写出该抛物线的方程及其准线方程;(Ⅱ)当PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.  相似文献   

14.
例直线l:y=-1/2x 2与椭圆(x2)/(a2) (y2)/(b2)=1交于A、B两点,O为坐标原点,M为线段AB的中点.若|AB|=5~(1/2),直线OM的斜率为1/2,求椭圆的方程.  相似文献   

15.
解直线和圆锥曲线相交形成的中点弦问题,不少参考书介绍了下面方法:设弦两端点坐标分别为(x1,y1)、(x2,y2),代入圆锥曲线得两方程后相减,得到弦中点坐标与弦所在直线斜率的关系、然后求解.(有些参考书称此法为"点差法"、"代入相减法"等)此法巧妙地将韦达定理、斜率公式、中点坐标公式结合起来,在求一些特殊的中点弦问题时,可以大大减少计算量,提高解题速度,确实具有很好的借鉴意义.但此法不甚完善,要特别注意它存在的局限性,在一些题目中运用此法,所求得的解会名不副实,出现以下二种"常见病".  相似文献   

16.
<正>在圆锥曲线的考查中,我们经常会遇到这样的一类问题:圆锥曲线上存在两点关于某条直线对称,求参数的取值范围。这类问题的解法是:设P(x_1,y_1),Q(x_2,y_2)是圆锥曲线上关于直线y=kx+b(k≠0)对称的两点,PQ的中点为M(x_0,y_0),则PQ的方程为y=-1/kx+m,利用点差法、中点坐标公式求得中点坐标,再根据中点与圆锥曲线的位置关系求解。例1已知抛物线C:y2=x与直线l:  相似文献   

17.
所谓“点差法”是指:先设弦的2个端点的坐标为(x1,y1)、(x1,y2),再代入圆锥曲线方程得2方程后相减,得弦中点坐标与弦所在直线斜率的关系,进而求解的方法.在解答平面解析几何中的某些问题时,如果能适时运用点差法,可以达到“设而不求”的目的,便于应用韦达定理、中点公式、斜率等,同时,还可以降低解题的运算量,优化解题过程,但必须注意用判别式大于零来确保相交.这类问题通常与直线斜率和弦的中点有关或借助曲线方程中变量的取值范围求出其他变量的范围.  相似文献   

18.
文[1]给出圆锥曲线“准点弦”的几个性质,文[2]给出了圆锥曲线“准点”的又几个性质.本文对此作进一步的探究,给出与圆锥曲线“准点”相关的又几个性质.定理1F是横向型圆锥曲线的焦点,E是与焦点F相应的准线和对称轴的交点,经过E且斜率为k的直线交圆锥曲线于A、B两点,e是圆锥曲线的离心率,若记F与A、B连线的斜率分别为k1,k2,则有分别k1+k2=0,且k1k2=(1?e2k?2)?1(其中k相似文献   

19.
在平面几何中,设O是圆中定弦AB的中点,过O作两条任意弦CD和GH,若CH和GD分别交AB于P和Q,则OP=OQ(如图)。这就是著名的“蝴蝶定理”。笔者认为上述结论,可以推广到圆锥曲线中,为此,先证明以下引理:引理:以圆锥曲线的一条对称轴为y轴,轴上的点O为原点建立直角坐标系,若过点O的直线l1:y=k1x交圆锥曲线于两点C(x1,y1)、D(x2,y2),直线l2:y=k2x交圆锥曲线于两点G(x3,y3)、H(x4,y4),则有k1x1x2(x3+x4)=k2x3x4(x1+x2)………………………(!)证明:由圆锥曲线的对称轴为y轴,可设圆锥曲线的一般方程为ax2+cy2+dy+f=05(a≠0)……………(1)将直…  相似文献   

20.
若直线l与圆锥曲线相交于点A(x1,y1),B(x2,y2)时,则弦AB的长:由和即可导出这个公式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号