首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study considers state and fault estimation for a switched system with a dual noise term. A zonotopic and Gaussian Kalman filter for state estimation is designed to obtain state estimation interval in the presence of both stochastic and unknown but bounded (UBB) uncertainties. The switching state and fault state of the system are distinguished by detecting whether the system measurement date is within the bounds of its predicted output. Once the switched time is detected in the system, the filter zonotopic and Gaussian Kalman functions are initialized. Once the fault time is detected, a zonotopic and Gaussian Kalman filter-based fault estimator is constructed to estimate the corresponding faults. Finally, a numerical simulation is presented to demonstrate the accuracy and effectiveness of the proposed algorithm.  相似文献   

2.
3.
4.
This paper investigates the finite-time stabilization for a class of upper-triangular switched nonlinear systems, where nonlinearities are allowed to be lower-order growing. Due to the special structure of the considered system, the presented methods for lower-triangular switched nonlinear systems in the literature can not be directly utilized. To solve the problem, a state feedback control law with a new structure is designed to guarantee the global finite-time stability of the closed-loop system under arbitrary switching signals by using the recursive design approach and the nested saturation method. A simulation example is provided to show the effectiveness of the proposed method.  相似文献   

5.
In this paper, the problem of state and unknown input estimations for a class of discrete-time switched linear systems with average dwell time switching is investigated. First, a proportional integral observer with an exponential H performance is constructed to estimate the system state and unknown input simultaneously. Second, both of the observability and the stability of the estimation error system are analyzed, then the derivation of the observer gain matrices is transformed into the calculation of linear matrix inequalities. Third, the obtained results are extended to the systems with output disturbances. Finally, two simulation examples are provided to show the validity and effectiveness of the proposed methods.  相似文献   

6.
This paper addresses the state observation and unknown input estimation of a class of switched linear systems with unknown inputs. This class of systems may have modes in which the state is not fully observable. A state transformation allows implementing two suitable reduced-order observers. The first one, based on second order sliding mode techniques, is proposed to reconstruct the discrete state in the presence of unknown inputs. The second one, based on gathering partial information from individual modes of the switched system and on higher order sliding mode techniques, is introduced to estimate the continuous state. Then, the observer injection signal of the first second order sliding mode observer is used to estimate the unknown inputs. Simulation results highlight the efficiency of the proposed method.  相似文献   

7.
《Journal of The Franklin Institute》2021,358(18):10141-10164
In this paper, a new method is proposed to identify the coefficients and differentiation orders of fractional order systems with measurement noise. The proposed method combines the operational matrix method and the set-membership method. First, the block pulse functions operational matrix of the fractional differentiation is used to convert the fractional order system to an algebraic system. Then, the coefficients and differentiation orders are simultaneously estimated through a nest loop optimization process, where the optimal bounding ellipsoid set-membership algorithm is utilized to estimate the system’s coefficients and the orders are estimated with the interior-point method. The proposed method can accurately estimate the coefficients and differentiation orders of fractional order systems under any bounded measurement noise with less computational effort. Experimental results demonstrate the effectiveness of the proposed method.  相似文献   

8.
In this paper, the problem about the false data injection attacks on sensors to degrade the state estimation performance in cyber-physical systems(CPSs) is investigated. The attack strategies for unstable systems and stable ones are both designed. For unstable systems, based on the idea of zero dynamics, an unbounded attack strategy is proposed which can drive the state estimation error variations to infinity. The proposed method is more general than existing unbounded attack strategies since it relaxes the requirement for the initial value of the estimation error. For stable systems, it is difficult to bring unbounded impacts on the estimation error variations. Therefore, in this case, an attack strategy with adjustable attack performance which makes the estimation error variations track predesigned target values is proposed. Furthermore, a uniform attack strategy which aims to deteriorate state estimation for both stable systems and unstable ones is derived. Finally, simulations are provided to illustrate the effectiveness of the proposed attack strategies.  相似文献   

9.
《Journal of The Franklin Institute》2023,360(13):10365-10385
This paper investigates a spatiotemporal sampled-data fuzzy control strategy for switched singularly perturbed partial differential equation (PDE) systems, where the systems’ operation modes obey average dwell-time switching mechanism. To efficiently deal with nonlinear terms and guarantee the system stability for the considered systems, a spatiotemporal sampled-data fuzzy control scheme is developed. Furthermore, based on the fact that mode mismatch phenomena during switching and sampling, through formulating novel Lyapunov functionals (LFs) with the discontinuous terms and mode-dependent two-sided looped-functionals, which can fully utilize the state information of the sampling period, a new exponential stability criterion is provided for the target systems. Finally, an example is provided to prove the validity of the proposed control approach.  相似文献   

10.
In this paper we propose an interval-based state estimator for continuous-time linear systems with discrete-time measurements using an event-triggered mechanism and an explicit reachability method. An output injection method combined with a state variables permutation procedure are applied to design the robust estimator. In addition, the convergence of the proposed set-membership state estimator and the existence of a lower bound on the inter-event times are shown. Throughout a numerical example, the performance of this estimator are illustrated and compared to related works.  相似文献   

11.
The problem of adaptive global finite-time stabilization control for a class of nonlinear switched systems in the presence of external perturbations and arbitrary switchings has been addressed in this research study. The proposed scheme has been designed based on a finite-time estimation technique in which during the control procedure, unknown imposed perturbations are accurately estimated by means of the designed finite-time disturbance observer (FTDO). Due to the exact estimation of the external disturbances within a given finite time, the encountered complications and adversities from loss of information in the Lyapunov parameter estimation (LPE) methods have been solved which are caused by the persistent switchings in the system. Furthermore, a new solution for the problem of chattering phenomenon in nonlinear switched systems has been presented by utilizing the designed FTDO, which can counteract the malfunctioning responses of the system caused by external disturbances and unmodeled dynamics. In this paper, an acknowledged class of nonlinear switched systems has been taken into account which is in the general form of canonical structure. In addition, the established design strategy is formulated for the control of perturbed nonlinear switched systems with one and only input and assures that the system states through the finite-time convergence characteristic, reach the equilibrium point of origin. Finally, numerical simulations are carried out on a mass-spring-damper (MSD) dynamical system to indicate advantages and superior efficiency of the suggested method.  相似文献   

12.
This paper investigates the stability and stabilization of switched linear singular systems with state reset at switching instants. Based on the dynamics decomposition of singular subsystems, a sufficient stability condition for the system with the given state reset is obtained. Then, the stabilization problem by state reset is investigated and an algorithm for computing the reset matrices is presented. The obtained results extend some previous works on both singular switched systems and reset control for normal switched systems. Finally, a numerical example is presented to illustrate the effectiveness of the proposed approach.  相似文献   

13.
In this paper, the problem of adaptive fuzzy fault-tolerant control is investigated for a class of switched uncertain pure-feedback nonlinear systems under arbitrary switching. The considered actuator failures are modeled as both lock-in-place and loss of effectiveness. By utilizing mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Under the framework of backstepping design technique and common Lyapunov function (CLF), an adaptive fuzzy fault-tolerant control (FTC) method with predefined performance bounds is developed. It is proved that under the proposed controller, all the signals of the close-loop systems are bounded and the state tracking error for each step remains within the prescribed performance bound (PPB) regardless of actuator faults and the system switchings. In addition, the tracking errors and magnitudes of control inputs can be reduced by adjusting the PPB parameters of errors in the first and last steps. The simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

14.
《Journal of The Franklin Institute》2023,360(14):10499-10516
In this paper, we aim to study model-based event-triggered control for a class of uncertain switched discrete-time systems composed of stabilizable and unstabilizable subsystems. A nominal model is introduced at the controller side to form a dynamic controller so that it can provide a kind of approximate estimate of the system state for system input even the overall switched discrete-time system is running in open-loop during any two consecutive event-triggered instants. By using multi-Lyapunov function method and the average dwell time switching strategy, stability conditions given in linear matrix inequality form for the closed-loop switched discrete-time system are derived. The design of control gains is also given. Finally, a numerical example and a physical example are provided to verify the effectiveness and usefulness of the proposed method.  相似文献   

15.
This paper concentrates on the output tracking control problem with L1-gain performance of positive switched systems. We adopt the multiple co-positive Lyapunov functions technique and conduct the dual design of the controller and the switching signal. Through introducing a new state variable, which is not the output error, the output tracking control problem of the original system is transformed into the stabilization problem of the dynamics system of this new state. The proposed approach is still effective even the output tracking control problem of any subsystem is unsolvable. According to the state being available or not, we establish the solvability conditions of the output tracking control problem for positive switched systems, respectively. In the end, a number example demonstrates the validity of the presented results.  相似文献   

16.
This paper investigates hybrid observer design of a class of unknown input switched nonlinear systems. The distinguishing feature of the proposed method is that the stability of all subsystems of the error switched systems is not necessarily required. First, an output derivative-based method and time-varying coordinate transformation are considered to eliminate the unknown input. Then in order to maintain a satisfactory estimation performance, an impulsive full-order and switched reduced-order observer are developed with a pair of upper and lower dwell time bounds and constructing time-varying Lyapunov functions combined with convex combination technique. In addition, the time-varying Lyapunov functions method is also used to analyze the stability of a class of error switched nonlinear systems with stable subsystems. Finally, two examples are presented to demonstrate the effectiveness of the proposed method.  相似文献   

17.
The saturated control problem is investigated for positive switched Takagi–Sugeno (T–S) fuzzy systems with partially controllable subsystems in this paper. Based on the parallel distribution compensation (PDC) algorithm and the convex hull technology, new fuzzy control schemes are proposed for continuous-time positive switched T–S fuzzy systems (PSTSFSs) with actuator saturation. By the multiple linear co-positive Lyapunov function and the slow-fast combined mode-dependent average dwell time (MDADT) approach, sufficient conditions for the stability of continuous-time closed-loop PSTSFSs are developed, which is an extension of the results in previous literature. Furthermore, the least conservative estimation of the attraction domain of PSTSFSs is transformed into an optimization problem. Finally, three simulation examples are given to illustrate the effectiveness of the proposed saturated control schemes.  相似文献   

18.
In this paper, the fault detection filter (FDF) design problem based on a dynamic event-triggered mechanism (DETM) is investigated for discrete-time systems with signal quantization and sensor nonlinearity. In order to conserve the limited network resources, a newly event-triggered mechanism with dynamic threshold is adopted to reduce the number of transmitted data through network more effectively. With the consideration of DETM, signal quantization and sensor nonlinearity, a fault detection filter is constructed to achieve the robustly asymptotic stability of established model with expected fault detection objective. In addition, by influence of DETM, external interference and quantization errors, a zonotopic residual evaluation mechanism is constructed to detect the occurring fault of plant. Finally, a practical example is provided to illustrate the effectiveness of proposed design approach.  相似文献   

19.
This paper studies the E-exponential stability of mode-dependent linear switched singular systems with stable and unstable subsystems. First, by constructing an appropriate multiple discontinuous Lyapunov function, new sufficient conditions of E-exponential stability for linear switched singular systems are established. Considering the feature of mode-dependent average dwell time switching, we adopt the switching strategy where fast switching and slowing switching are respectively applied to unstable and stable subsystems. Compared with the existing results, our approach is more flexible and tighter bounds can be obtained. Finally, a numerical example is provided to illustrate the effectiveness of the proposed criteria.  相似文献   

20.
This paper investigates the problem of event-triggered adaptive neural network (NN) control for multi-input multi-output (MIMO) switched nonlinear systems with output and state constraints and non-input-to-state practically stable (ISpS) unmodeled dynamics. A nonlinear mapping is firstly utilized to deal with output and state constraints. Also, by developing a new switching signal with persistent dwell-time (PDT) and a switching dependent dynamic signal, the difficulty caused by some non-ISpS unmodeled dynamics is overcome. Then, a type of switching event-triggering mechanisms (ETMs) and event-triggered adaptive NN controllers of subsystems are designed, which handle the issue of asynchronous switching without requiring any known restriction on maximum asynchronous time. A piecewise constant introduced into this ETM effectively ensures a strict positive lower bound of inter-event times. Zeno behavior is thus ruled out. Finally, by proposing a novel class of switching signals with reset PDT, it is ensured that all output and state constrains are never violated and all signals of the switched closed-loop system are semi-global uniform ultimate boundedness (SGUUB). A two inverted pendulum system and a numerical example are provided for illustrating the applicability and validity of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号