首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
This paper presents an extended state observer-based output feedback adaptive controller with a continuous LuGre friction compensation for a hydraulic servo control system. A continuous approximation of the LuGre friction model is employed, which preserves the main physical characteristics of the original model without increasing the complexity of the system stability analysis. By this way, continuous friction compensation is used to eliminate the majority of nonlinear dynamics in hydraulic servo system. Besides, with the development of a new parameter adaption law, the problems of parametric uncertainties are overcome so that more accurate friction compensation is realized. For another, the developed adaption law is driven by tracking errors and observation errors simultaneously. Thus, the burden of extended state observer to solve the remaining uncertainties is alleviated greatly and high gain feedback is avoided, which means better tracking performance and robustness are achieved. The designed controller handles not only matched uncertainties but also unmatched dynamics with requiring little system information, more importantly, it is based on output feedback method, in other words, the synthesized controller only relies on input signal and position output signal of the system, which greatly reduces the effects caused by signal pollution, measurement noise and other unexpected dynamics. Lyapunov-based analysis has proved this strategy presents a prescribed tracking transient performance and final tracking accuracy while obtaining asymptotic tracking performance in the presence of parametric uncertainties only. Finally, comparative experiments are conducted on a hydraulic servo platform to verify the high tracking performance of the proposed control strategy.  相似文献   

2.
This paper studies output feedback control of hydraulic actuators with modified continuous LuGre model based friction compensation and model uncertainty compensation. An output feedback adaptive robust controller is constructed which combines the adaptive control part and the robust control part seamlessly. The adaptive part is constructed to handle the parametric uncertainties existed in the model. The residuals coming from parameter adaption and the unmodeled dynamics are taken into consideration by the robust part. Since only the position signal is available, the velocity, pressure, and internal friction states are obtained by observation or estimation. The errors coming from observation and estimation are also dealt with the robust part. Furthermore, the convergence of the closed-loop controller–observer scheme is achieved by the Lyapunov method in the presence of parametric uncertainties only. Extensive comparative experiments performed on a hydraulic actuator demonstrate the effectiveness of the proposed controller–observer scheme.  相似文献   

3.
The attitude tracking control problem of a spacecraft nonlinear model with external disturbances and inertia uncertainties is addressed in this paper. First, a new sliding mode controller is designed to ensure the asymptotic convergence of the attitude and angular velocity tracking errors against external disturbances and inertia uncertainties by using a modified differentiator to estimate the total disturbances. Second, an adaptive algorithm is applied to compensating the disturbances, by which another sliding mode controller is successfully designed to achieve a high performance on the attitude tracking in the presence of the inertia uncertainties, external disturbances and actuator saturations. Finally, simulation results are presented to illustrate effectiveness of the control strategies.  相似文献   

4.
This paper investigates the fixed-time neural network adaptive (FNNA) tracking control of a quadrotor unmanned aerial vehicle (QUAV) to achieve flight safety and high efficiency. By combining radial basis function neural network (RBFNN) with fixed time adaptive sliding mode algorithm, a novel radial basis function neural network adaptive law is proposed. In addition, an extended state/disturbance observer (ESDO) is proposed to solve the problem of unmeasurable state and external interference, which can obtain reliable state feedback and interference input. Unlike most other ESO applications, this paper does not set the uncertainty model and external disturbances as total disturbances. Instead, the external disturbances are observed by extending the states and the observed states are fed back to the controller to cancel the disturbances. In view of the time-varying resistance coefficient and inertia torque in the QUAV model, the neural network is introduced so that the controller does not need to consider these nonlinear uncertainties. Finally, a numerical example is given to verify the effectiveness of the coupled non-simplified QUAV model.  相似文献   

5.
In the electric driving system, the measurement of the motor speed error becomes more and more important, which has an impact on the system vibration suppression. In this paper, based on the single-neuron adaptive PID control method, the dual-inertia system considering gear friction torque is modeled and studied. Firstly, the dual-inertia system with gear friction is established, and dynamic differential equations of it are derived; Then, the comprehensive meshing stiffness and the time-varying friction torque of the gear system are deduced; Next, the Ziegler-Nichlos frequency domain response method is adopted to obtain the parameters of the PID controller. The control methods including the PID, Fuzzy-PID with DOB and single-neuron adaptive PID are utilized to adjust the motor speed of the system; Finally, the effects of gear friction, the moment of inertia of load and control methods on motor speed and system error are analyzed.  相似文献   

6.
This paper is concerned with the high performance adaptive robust control problem for an aircraft load emulator (LE). High dynamic capability is a key performance index of load emulator. However, physical load emulators exist a lot of nonlinearities and modeling uncertainties, which are the main obstacles for achieving high performance of load emulator. To handle the modeling uncertainty and achieve adjustable model-based compensation, firstly, the mathematical model of the load emulator is built, and then a nonlinear adaptive robust controller only with output feedback signal is proposed to improve the tracking accuracy and dynamic response capability. The controller is constructed based on the adaptive robust control framework with necessary design modifications required to accommodate uncertainties and nonlinearities of hydraulic load emulator. In this approach, nonlinearities are canceled by output feedback signal; and modeling errors, including parametric uncertainties and uncertain nonlinearities, are dealt with adaptive control and robust control respectively. The resulting controller guarantees a prescribed disturbance attenuation capability in general while achieving asymptotic output tracking in the absence of time-varying uncertainties. Experimental results are obtained to verify the high performance nature of the proposed control strategy, especially the high dynamic capability.  相似文献   

7.
This paper investigates the problem of horizontal-plane trajectory tracking for fixed-wing unmanned aerial vehicles(UAVs) subjected to external disturbances and uncertainties including coupling and unmodeled dynamics. Under the assumption there exist ideal inner-loop controllers, the 12-state model is reduced to a 6-state translational motion model, which is described by a group of simplified nonlinear equations with equivalent disturbances via introducing general aerodynamic models. Then a new cascaded control structure consisting of an outer-loop controller for position control and inner-loop controllers for attitude and thrust control is proposed. Based on feedback linearization technology and signal compensation theory, the proposed controller applied for position control incorporates a nominal linear time-invariant controller and a robust compensator, the latter of which is introduced to restrain the effects of uncertainties and disturbances. The robust performance of the closed-loop system is proved. Actual experimental results conducted on a small fixed-wing aircraft demonstrate that the proposed control approach is effective.  相似文献   

8.
In this paper, two output feedback controllers are proposed for motion control of double-rod electro-hydraulic servo actuators with matched and mismatched disturbances rejection. All of them employ an linear extended state observer (LESO) to achieve real-time estimates of the unmeasured system states and matched disturbance, and a nonlinear disturbance observer (NDO) to estimate the largely unknown mismatched disturbance at the same time. Thus, the disturbances are compensated via their online estimates in a feedforward way when implementing the resulting control algorithms, respectively. Furthermore, a continuously differentiable friction model is employed to compensate the majority of nonlinear friction existing in the system and reduce the burden of the NDO. Specially, one of the proposed control schemes utilizes model-based compensation terms depending on the desired trajectory to be tracked instead of the estimated system states. By doing this, online computation burden can be reduced. The stability of the whole closed-loop system under each control scheme is guaranteed by theoretical analysis. Moreover, the applicability of each control scheme are validated by experiments in different working conditions.  相似文献   

9.
Underactuated mobile robot (UMR) is a typical nonlinear underactuated system with nonholonomic and holonomic constraints. Based on the model of UMR, we propose a novel adaptive robust control to control the UMR and compensate the uncertainties from the view of constraint-following. The uncertainties, which are (possibly fast) time-varying and bounded, include modeling error, initial condition deviation, friction force and other external disturbances. However, the bounds are unknown. To estimate the bounds of the uncertainties, we design an adaptive law which is of leakage type. The uniform boundedness and the uniform ultimate boundedness of the proposed control are verified by Lyapunov method. Furthermore, the effectiveness of the control is shown via numerical simulation of a case.  相似文献   

10.
11.
This paper studies the finite-time guaranteed cost control problem for switched nonlinear stochastic systems with parameter uncertainties and time-varying delays. By choosing a model-dependent and delay-dependent Lyapunov-Krasovskii functional, applying the average dwell time approach and the Gronwall inequality, some novel sufficient conditions are derived to ensure that the switched nonlinear stochastic closed-loop system is finite-time stochastically stable and an upper bound is given on the performance index. The obtained nonlinear matrix is transformed into a linear matrix form, and then the feedback controller gains of the switched nonlinear stochastic systems with time-varying delay are obtained. Finally, two simulation examples are designed to verify the effectiveness of the suggested approach.  相似文献   

12.
This paper aims to solve the problem of sliding mode control for an uncertain two-dimensional (2-D) systems with states having time-varying delays. The uncertainties in the system dynamics are constituted of mismatched uncertain parameters and the unknown nonlinear bounded function. The proposed problem utilizes the model transformation approach. By segregating the proper Lyapunov–Krasovskii functional in concert with the improved version of Wirtinger-based summation inequality, sufficient solvability conditions for the existence of linear switching surfaces have been put forward, which ensure the asymptotical stability of the reduced-order equivalent sliding mode dynamics. Then, we solve the controller synthesis problem by extending the recently proposed reaching law to 2-D systems, whose proportional part is appropriately scaled by the factor that does not depend on some constant terms but rather on current switching surface’s value, which in turn ensures the faster convergence and better robustness against uncertainties. Finally, the proposed results have been validated through an implementation to a suitable physical system.  相似文献   

13.
This paper develops an adaptive actuator failure compensation scheme for control of a class of nonlinear multi-input–multi-output systems with redundant actuators subject to uncertain failures. The design method is to estimate the failure pattern parameters and the failure signal parameters first, and then use the parameter estimates to construct the adaptive failure compensation controller, the control law calculation is done simultaneously with parameter estimation without explicit failure detection. Closed-loop signal boundedness and asymptotic output tracking, despite the actuator failure uncertainties, are ensured analytically and verified by simulation results from its application to attitude control of a near space vehicle dynamic model.  相似文献   

14.
This paper develops a robust state-feedback controller for active suspension system with time-varying input delay and wheelbase preview information in the presence of the parameter uncertainties. By employing system augmentation technique, a multi-objective control optimization model is first established and then this controller design is converted to a static full-state feedback controller design with robust H and generalized H2 performance, wherein the model-dependent control gain is evaluated by transforming the related nonlinear matrix inequalities into their corresponding linear matrix inequality forms based on Lyapunov theory, and then LMI (Linear-Matrix-Inequality) technique is applied to solve and obtain the desired controller. A numerical simulation case is finally provided to reveal the effectiveness and advantages of the proposed controller.  相似文献   

15.
In order to improve the response speed and control precision of the braking system with parameters uncertainty and nonlinear friction, a braking-by-wire system based on the electromagnetic direct-drive valve and a novel cascade control algorithm was proposed in this paper. An electromagnetic linear actuator directly drives the valve spool and rapidly adjusts the pressure of braking wheel cylinders. A dynamic model of electromagnetic direct-drive valve considering improved LuGre dynamic friction is established. A novel cascade control algorithm with an outside loop pressure fuzzy controller and an inside loop electromagnetic direct-drive valve position controller was proposed. An adaptive integral robust inside loop controller is designed by combining friction compensation adaptive control law, linear feedback, and integral robust control. The uncertainty parameters and the friction state are estimated online. The stability of the cascade controller is proved by the Lyapunov method. Then a multi-objective opitimizemization design method of control parameters is proposed, which combines a multi-objective game theory and a technique for order preference by similarity to ideal solution (TOPSIS) based on entropy weight. The results show that the pressurization time of cascade control is less than 0.09 s under the 15 MPa step target signal. The control precision is improved effectively by the cascade controller under the ARTEMIS condition.  相似文献   

16.
This study focused on controlling a class of nonlinear systems with actuation time delays. We proposed a novel output-feedback controller in which the magnitude of the input commands is saturated and can be adjusted by varying control parameters. In this design, a predictor term is used to compensate for delays in the input, and auxiliary systems are exploited to provide a priori bounded control commands and account for the lack of full-state information. The stability analysis results revealed that uniformly ultimately bounded tracking is guaranteed despite modeling uncertainties and additive time-varying disturbances in the system dynamics. The performance of the controller was evaluated through simulation.  相似文献   

17.
《Journal of The Franklin Institute》2022,359(18):10483-10509
In this paper, a fast fixed-time vertical plane motion controller is proposed for autonomous underwater gliders (AUGs) gliding in shallow water. The influence of speed-sensorless conditions, model uncertainties, unknown time-varying external disturbances, input saturations, and state delay are taken into account. To improve control performance, a fast fixed-time stable system is first presented. Based on the system, an adaptive extended state observer (ESO) is developed for estimating speed, model uncertainties, and external disturbances. A fast fixed-time controller is designed for improving the gliding efficiency and reducing the risk of hitting the ocean floor. Moreover, an input saturation auxiliary system and an advance compensation method are presented to cope with input saturations and state delay. According to Lyapunov theory, it is proved that the AUG states can converge into a small neighborhood within a fixed time. Finally, simulation results demonstrate the rapidity and effectiveness of the designed control method.  相似文献   

18.
《Journal of The Franklin Institute》2023,360(13):10127-10164
This paper investigates a difficult problem of nonlinear dynamics and motion control of a dual-flexible servo system with an underactuated hand (DFSS-UH). Variation in grasping mass and nonlinear factors of the DFSS-UH including complex flexible deformation and friction torque aggravate the output speed fluctuation, leading to modeling errors in the dynamics, which in turn affects the underactuated hand motion accuracy. A novel neural network sliding mode control (NNSMC) method is designed to control the DFSS-UH. The strategy utilizes neural networks to compensate for dynamics modeling errors, which takes into account neglected nonlinear factors and inaccurate friction torque. The reaching law with the hyperbolic tangent function is proposed to improve sliding mode control, thereby weakening the chattering phenomenon. First of all, the DFSS-UH mechanical model considering many nonlinear factors is established and a dynamic simplification model which ignores higher-order modes is proposed. Secondly, the adaptive law of weighted coefficients is proposed according to the stability of the DFSS-UH. Finally, the physical control platform of the DFSS-UH is built, and simulation and control experiments are conducted. Experimental results show that the improved NNSMC strategy decreases the tracking error of flexible load, thereby enhancing the control accuracy of the DFSS-UH.  相似文献   

19.
In this paper, an analytic solution of nonlinear H robust controller is first proposed and used in a complete six degree-of-freedom nonlinear equations of motion of flight vehicle system with mass and moment inertia uncertainties. A special Lyapunov function with mass and moment inertia uncertainties is considered to solve the associated Hamilton-Jacobi partial differential inequality (HJPDI). The HJPDI is solved analytically, resulting in a nonlinear H robust controller with simple proportional feedback structure. Next, the control surface inverse algorithm (CSIA) is introduced to determine the angles of control surface deflection from the nonlinear H control command. The ranges of prefilter and loss ratio that guarantee stability and robustness of nonlinear H flight control system implemented by CSIA are derived. Real aerodynamic data, engine data and actuator system of F-16 aircraft are carried out in numerical simulations to verify the proposed scheme. The results show that the responses still keep good convergence for large initial perturbation and the robust stability with mass and moment inertia uncertainties in the permissible ranges of the prefilter and loss ratio for which this design guarantees stability give same conclusion.  相似文献   

20.
Robust formation problems for linear multi-agent systems with uncertainties and external disturbances are investigated in this paper. The model of each agent can be described by a nominal linear system combined with external disturbances and uncertainties which include parameter perturbations and nonlinear uncertainties. A more general bound of uncertainties is introduced. A robust formation controller, which consists of a nominal controller and a robust compensator, is proposed to achieve the desired state formation and restrain the influence of uncertainties and disturbances. Furthermore, sufficient conditions for time-varying formation feasibility are introduced and proved. Finally, a numerical example is provided to demonstrate the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号