首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 424 毫秒
1.
In this paper, we apply event-triggered control to nonlinear systems with impulses, and investigate the problem of ensuring globally exponential stability (GES) of the systems, where events and impulses may occur at different time. Moreover, two types of impulses (i.e., stabilizing and destabilizing) can coexist. On the basis of Lyapunov method and impulsive control theory, some sufficient conditions ensuring GES are derived, and the Zeno behaviour can be excluded. These conditions are presented in the form of linear matrix inequalities (LMI). In particular, inspired by average dwell-time methods, conditions for restriction of impulses are proposed, which guarantee GES of nonlinear systems involving single stabilizing and destabilizing or multiple impulses, respectively. Furthermore, the problem of designing event-triggered mechanism and control gains are solved by using LMI method. Lastly, two numerical simulation examples are given to represent the effectiveness of our results.  相似文献   

2.
The property of input-to-state stability (ISS) of inertial memristor-based neural networks with impulsive effects is studied. Firstly, according to the characteristics of memristor and inertial neural networks, the inertial memristor-based neural networks are built. Secondly, based on the impulsive control theory, the average impulsive interval approach, Halanay differential inequality, Lyapunov method and comparison property, some sufficient conditions ensuring ISS of the inertial memristor-based neural networks under impulsive controller are derived. In this paper, we consider two types of impulse, stabilizing impulses and destabilizing impulses. When the inertial memristor-based neural networks are originally not ISS, by choosing a suitable lower bound of the average impulsive interval, the stabilizing impulses can be used to stabilize the inertial memristor-based neural networks. On the contrary, the inertial memristor-based neural networks are originally ISS, by restricting the upper bound of the average impulsive interval, the ISS of inertial memristor-based neural networks with destabilizing impulses can be ensured. Finally, numerical results are presented to illustrate the main results.  相似文献   

3.
This paper studies the input-to-state stabilization problem of nonlinear time-delay systems. A novel event-triggered hybrid controller is proposed, where feedback controller and distributed-delayed impulsive controller are taken into account. By using the Lyapunov-Krasovskii method, sufficient conditions for input-to-state stability are constructed under the designed event-triggered hybrid controller, the relation among control parameters, threshold parameter of the event-triggered mechanism and time delay in the impulsive signals is derived. Compared with the existing results, the obtained input-to-state stability criteria are applicable to time-delay systems with stabilizing delay-dependent impulsive effects and destabilizing ones. Numerical examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

4.
This study addresses the exponential stability and positive stabilization problems of impulsive positive systems (IPSs) with time delay. Specially, three types of impulses, namely, disturbance, “neutral”, and stabilizing impulses, are considered. For each type of impulsive effect, the exponential stability criterion is established utilizing the Lyapunov–Razumikhin techniques. Moreover, on the basis of the obtained stability results, the state-feedback controller design problem is investigated to positively stabilize the IPSs with time delay under different types of impulsive effects. Finally, numerical examples are provided to illustrate the effectiveness of the theoretical results.  相似文献   

5.
In this paper, we investigate the Lyapunov stability for general nonlinear systems by means of the event-triggered impulsive control (ETIC), in which the delayed impulses are greatly taken into account. On the basis of impulsive control theory, a set of Lyapunov-based sufficient conditions for uniform stability and asymptotic stability of the addressed system are obtained in the framework of event triggering, under which Zeno behavior is excluded. It is shown that our results depend on the event-triggering mechanism (ETM) and the time delays. Then the mentioned results are applied to synchronization of chaotic systems and moreover, a kind of impulsive controllers is designed in form of linear matrix inequality (LMI), where the delayed impulsive control can be activated only when events happen. In the end, to illustrate the validity of the mentioned theoretical results, we present a numerical example.  相似文献   

6.
This work aims to analyze the exponential stability of a non-linear impulsive neutral stochastic delay differential system. In this study, impulse perturbation is considered a delay-dependent state variable. The solution of the delay-dependent impulsive neutral stochastic delay differential system is associated with the solution of the system without impulses. First, we developed a relation connecting the solution of the neutral stochastic delay differential system without impulses and the solution of the corresponding system with impulses. Then, the conditions of the exponential stability of the proposed impulsive system are derived by determining the stability analysis of the respective system without impulse. The numerical approach for the neutral stochastic delay system without impulses is generated using the Euler-Maruyama method and adopted for the corresponding impulsive system. Finally, the achieved theoretical results are illustrated for applying the Malthusian single species neutral stochastic delay population model with immigration impulses.  相似文献   

7.
In this paper, we mainly tend to consider distributed leader-following fixed-time quantized consensus problem of nonlinear multi-agent systems via impulsive control. An appropriate quantized criterion and some novel control protocols are proposed in order to solve the problem. The protocols proposed integrates the two control strategies from the point of view of reducing communication costs and constraints, which are quantized control and impulsive control. The fixed-time quantized consensus of multi-agent is analyzed in terms of algebraic graph theory, Lyapunov theory and comparison system theory, average impulsive interval. The results show that if some sufficient conditions are met, the fixed-time consensus of multi-agent systems can be guaranteed under impulsive control with quantized relative state measurements. In addition, compared with finite-time consensus, the settling-time of fixed-time quantized consensus does not depend on the initial conditions of each agent but on the parameters of the protocol. Finally, numerical simulations are exploited to illustrate the effectiveness and performance to support our theoretical analysis.  相似文献   

8.
In this paper, we investigate the problem of global exponential dissipativity of neural networks with variable delays and impulses. The impulses are classified into three classes: input disturbances, stabilizing and “neutral” type—the impulses are neither helpful for stabilizing nor destabilizing the neural networks. We handle the three types of impulses in a uniform way by using the excellent ideology introduced recently. To this end, we propose new techniques which coupled with more general Lyapunov functions to realize the ideology and it is shown that they are more effective. Exponential dissipativity conditions are established in terms of linear matrix inequalities (LMIs) and these conditions can be straightforwardly reduced to exponential stability conditions. Numerical results are given to show that the obtained conditions are effective and less conservative than the existing ones.  相似文献   

9.
In this paper, the synchronization problem is studied for a class of stochastic discrete-time complex networks with partial mixed impulsive effects. The involving impulsive effects, called partial mixed impulses, can be regarded as local and time-varying impulses, which means that impulses are not only injected into a fraction of nodes in networks but also contain synchronizing and desynchronizing impulses at the same time. In order to handle this case, several mathematical techniques are proposed to tackle mixed impulsive effects in discrete-time dynamical systems. Based on the variation of parameters formula, several sufficient criteria are derived to ensure that synchronization of the addressed networks can be achieved in mean square. The obtained criteria not only rely on the strengths of mixed impulses and the impulsive intervals, but also can reduce conservativeness. Finally, a numerical example is presented to show the effectiveness of our results for neural networks.  相似文献   

10.
This paper presents a fixed-time observer for a general class of linear time-delay systems. In contrast to many existing observers, which normally estimate system’s trajectory in an asymptotic fashion, the proposed observer estimates system’s state in a prescribed time. The proposed fixed-time observer is realized by updating the observer in an impulsive manner. Simulation results are also presented to illustrate the convergence behavior of the proposed fixed-time observer.  相似文献   

11.
In this paper, the stochastic input-to-state stability is investigated for random impulsive nonlinear systems, in which impulses happen at random moments. Employing Lyapunov-based approach, sufficient conditions for the stochastic input-to-state stability are established based on the connection between the properties of system and impulsive intervals. Two classes of impulsive systems are considered: (1) the systems with single jump map; (2) the systems with multiple jump maps. Finally, some examples are provided to illustrate the effectiveness of the proposed results.  相似文献   

12.
In this paper, by using Lyapunov functions, Razumikhin techniques and stochastic analysis approaches, the robust exponential stability of a class of uncertain impulsive stochastic neural networks with delayed impulses is investigated. The obtained results show that delayed impulses can make contribution to the stability of system. Compared with existing results on related problems, this work improves and complements ones from some works. Two examples are discussed to illustrate the effectiveness and the advantages of the results obtained.  相似文献   

13.
By using the Razumikhin-type technique, for stochastic discrete-time delay systems, this paper establishes the discrete Razumikhin-type theorems on the pth moment stability, the global pth moment stability and the pth moment exponential stability, respectively. The almost sure exponential stability is also investigated by using the pth moment exponential stability and the Borel–Cantelli lemma. As the applications of t he established theorems, stability of a special class of stochastic discrete-time delay systems, synchronization of the stochastic discrete-time delay dynamical networks and stabilization of a stochastic discrete-time linear delay time invariant system are examined.  相似文献   

14.
This paper studies the exponential stability of switched positive system consisting of unstable subsystems with distributed time-varying delay. Unlike the existing results concerning delays, switching behaviors dominating the system can be either stabilizing or destabilizing. The distributed delay is supposed to be slowly varying and upper-bounded. To tackle the difficulties brought by both the switching behaviors with mixed effects and the distributed delay, a multiple discretized Lyapunov–Krasovskii functional is employed to derive sufficient conditions for the exponential stability of the system. Specifically, by adjusting the ratio of the stabilizing switching behaviors, the state divergence caused by unstable subsystems and destabilizing switching behaviors can be compensated. Simulation examples demonstrate the effectiveness of the results.  相似文献   

15.
This paper investigates stability problems of a class of nonlinear impulsive switching systems with time-varying delays. Based on the common Lyapunov function method and Razumikhin technique, several stability criteria are established for nonlinear impulsive switching systems with time-varying delays. Our results show that switching systems can be stabilized by impulsive switching signals even if the system matrices are all unstable. In the absence of impulses, some of our results reduce to similar stability criteria for nonimpulsive switching systems in some recent research articles. Several examples with simulations are given to illustrate the efficiency of our results.  相似文献   

16.
In this paper, the pth moment exponential stability for a class of impulsive stochastic functional differential equations with Markovian switching is investigated. Based on the Lyapunov function, Dynkin formula and Razumikhin technique with stochastic version as well as stochastic analysis theory, many new sufficient conditions are derived to ensure the pth moment exponential stability of the trivial solution. The obtained results show that stochastic functional differential equations with/without Markovian switching may be pth moment exponentially stabilized by impulses. Moreover, our results generalize and improve some results obtained in the literature. Finally, a numerical example and its simulations are given to illustrate the theoretical results.  相似文献   

17.
This paper analyses the weak projective synchronization (WPS) of the parameter mismatched memristive neural networks (MNNs) with stochastic disturbance and time delays via impulsive control. Complete synchronization cannot achieve because of the projective factor and mismatched parameters. Therefore, the WPS of practical MNNs under impulsive control strategy is studied. The augmented systems are built to utilize more information of the system and reduce the constraint conditions. Meanwhile, two types of comparison principles are used owing to the impulsive controller with and without time delays. Then, sufficient criteria for the exponential convergence of systems are obtained under the positive and negative effects of impulses. Finally, the validity of the theoretical results is verified by simulations of different conditions.  相似文献   

18.
This paper mainly focuses on the adaptive synchronization problem of multi-agent systems via distributed impulsive control method. Different from the existing investigations of impulsive synchronization with fixed time impulsive inputs, the proposed distributed variable impulsive protocol allows that the impulsive inputs are chosen within a time period (namely impulsive time window) which can be described by the distances of the left (right) endpoints or the centers between two adjacent impulsive time windows. Obviously, this kind of flexible control scheme is more effective in practical systems (especially for the complex environment with physical restrictions). Moreover, the proposed adaptive control technique is helpful to solve the problem with uncertain system parameters. By means of Lyapunov stability theory, impulsive differential equations and adaptive control technique, three sufficient impulsive consensus conditions are given to realize the synchronization of a class of multi-agent nonlinear systems. Finally, two numerical simulations are provided to illustrate the validity of the theoretical analysis.  相似文献   

19.
Stability notions and Lyapunov functions for sliding mode control systems   总被引:2,自引:0,他引:2  
The paper surveys mathematical tools required for stability and convergence analysis of modern sliding mode control systems. Elements of Filippov theory of differential equations with discontinuous right-hand sides and its recent extensions are discussed. Stability notions (from Lyapunov stability (1982) to fixed-time stability (2012)) are observed. Concepts of generalized derivatives and non-smooth Lyapunov functions are considered. The generalized Lyapunov theorems for stability analysis and convergence time estimation are presented and supported by examples from sliding mode control theory.  相似文献   

20.
This paper is assigned to study the stability and controllability of fuzzy singular dynamical systems. Some new notions such as granular fuzzy matrix norm, the algebraic operations on the space of fuzzy matrices, fuzzy equilibrium point, and the granular fuzzy transfer function of fuzzy singular dynamical systems are introduced. Furthermore, by presenting some theorems proved in this paper, the fuzzy solutions of fully fuzzy singular dynamical systems are obtained. Moreover, some new notions regarding the analysis of the stability of fuzzy singular dynamical systems are given. The stability analysis underlies the concepts of fuzzy stable, fuzzy critical stable, and fuzzy unstable singular dynamical systems. Besides using the notions of controllability of the fuzzy slow and fast subsystems, the concept of granular controllability of the fuzzy singular dynamical system is investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号