首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the problem of mean-square integral input-to-state stability of nonlinear impulsive semi-Markov jump delay systems is investigated. By using stochastic Lyapunov functions together with Razumikhin technique, some sufficient conditions for mean-square integral input-to-state stability for a class of nonlinear impulsive semi-Markov jump delay systems are developed. In particular, the results obtained generalize and complement some recent literature. Finally, some numerical examples are given to show the effectiveness and advantages of the proposed techniques.  相似文献   

2.
This paper is concerned with the input-to-state stability (ISS) of impulsive stochastic systems. First, appropriate concepts of stochastic input-to-state stability (SISS) and pth moment input-to-state stability (p-ISS) for the mentioned systems are introduced. Then, we prove that impulsive stochastic systems possessing SISS-Lyapunov functions are uniformly SISS and p-ISS over a certain class of impulse sequences. As a byproduct, a criterion on the uniform global asymptotic stability in probability for the system in isolation (without inputs) is also derived. Finally, we provide a numerical example to illustrate our results.  相似文献   

3.
This paper studies the input-to-state stabilization problem of nonlinear time-delay systems. A novel event-triggered hybrid controller is proposed, where feedback controller and distributed-delayed impulsive controller are taken into account. By using the Lyapunov-Krasovskii method, sufficient conditions for input-to-state stability are constructed under the designed event-triggered hybrid controller, the relation among control parameters, threshold parameter of the event-triggered mechanism and time delay in the impulsive signals is derived. Compared with the existing results, the obtained input-to-state stability criteria are applicable to time-delay systems with stabilizing delay-dependent impulsive effects and destabilizing ones. Numerical examples are provided to demonstrate the effectiveness of the theoretical results.  相似文献   

4.
In this paper, the global asymptotic stability in probability and the exponential stability in mth moment are investigated for random nonlinear systems with stochastic impulses, whose occurrence is determined by a Poisson process. The stochastic disturbances in the impulsive random nonlinear systems are driven by second-order processes, which have bounded mean power. Firstly, the improved Lyapunov approaches for the global asymptotic stability in probability and the exponential stability in mth moment are established for impulsive random nonlinear systems based on the uniformly asymptotically stable function. Secondly, the improved results are further extended to the impulsive random nonlinear systems with Markovian switching. Finally, two examples are provided to verify the feasibility and effectiveness of the obtained results.  相似文献   

5.
针对几类重要的随机非线性系统, 提出了一些新的概念,发展了一些基本分析工具, 研究了几类控制器的设计问题. 主要成果包括:(1) 针对一类部分动态不可量测的非线性随机系统,引入了随机输入状态稳定(SISS)的概念, 借助于分析概率理论,发展了随机系统改变能量函数方法, 成功地处理了随机微分中的伊藤项,给出了随机非线性串联系统SISS的小增益类条件. (2) 对一类具有SISS随机逆动态的大规模随机非线性系统,给出了分散自适应输出反馈镇定控制器的构造性设计方法. 既解决了实用镇定问题也解决了渐近镇定问题. 在分散控制框架内,给出了处理随机非线性逆动 态的方法. (3) 对一类具有不稳定零动态的随机非线性系统,引入了随机输入状态可镇定的概念,给出了全局输出反馈镇定控制器构造性设计方法. (4) 对一类具有线性增长的不可量测状态的随机非线性系统,针对方差未知的噪声和一般随机输入,引入了广义随机输入状态稳定(GSISS)的概念,分别给出了随机干扰抑制和渐近镇定的输出反馈控制器的构造性设计方法.(5) 对一般的时滞随机非线性系统, 给出了解存在唯一的判定条件,引入了依概率全局(渐近)稳定的概念及相应的判定准则,丰富了随机时滞非线性系统的控制器设计理论. 对一类不确定随机时变时滞系统,构造性地设计出了自适应输出反馈镇定控制器.  相似文献   

6.
This paper focuses on input-to-state stability of a class of switched stochastic delayed systems which are drived by Lévy noise. By multiple Lyapunov function and average dwell time approach, the sufficient conditions of the ψλ(t)-weighted input-to-state stability can be obtained if all the subsystems are input-to-state stable. Then utilizing comparison principle and the method of constant variation, the sufficient criteria of the eλt-weighted input-to-state stability of the switched stochastic delayed systems containing both input-to-state stable subsystems and non-input-to-state stable subsystems can also be derived. Finally, an example is given to illustrate the effectiveness of the proposed results.  相似文献   

7.
Mean square exponential input-to-state stability (MSEISS) is considered for stochastic Markovian reaction-diffusion systems (SMRDSs) with impulsive perturbations. Both the boundary input and distributed input are considered in SMRDSs. With the Lyapunov–Krasovskii functional method, impulse theory and inequality techniques, a sufficient condition is established to achieve the MSEISS for SMRDSs with completely known transition rate matrix. Moreover, combined with the obtained sufficient conditions, the effects of the impulse and diffusion terms on MSEISS are demonstrated by examples. Then, the case is studied that the transition rate matrix is partially unknown and sufficient conditions are presented to ensure the MSEISS in light of the introduced free constants. Finally, two numerical examples are given to illustrate the validity of our theoretical results.  相似文献   

8.
9.
In this paper, a command filter based dynamic surface control (DSC) is developed for stochastic nonlinear systems with input delay, stochastic unmodeled dynamics and full state constraints. An error compensation system is designed to constrain the filtering error caused by the first-order filter in the traditional dynamic surface design. On this basis, the stability proof of DSC for stochastic nonlinear systems based on command filter is proposed. The definition of state constraints in probability is presented, and the problem of stochastic full state constraints is solved by constructing a group of coordinate transformations with nonlinear mappings. The Pade approximation is adopted to deal with input delay. The stochastic unmodeled dynamics is considered, which is processed by utilizing the property of stochastic input-to-state stability (SISS) and changing supply function. All the signals of the system are proved to be semi-globally uniformly ultimately bounded (SGUUB) in probability, and the full state constraints are not violated. The two simulation examples also verify the effectiveness of the proposed adaptive DSC scheme.  相似文献   

10.
This paper presents an adaptive event-triggered filter of positive Markovian jump systems based on disturbance observer. A new adaptive event-triggering mechanism is constructed for the systems. A positive disturbance observer is designed for the systems to estimate the disturbance. A distributed output model of each subsystem of positive Markovian jump systems is introduced. Then, an adaptive event-triggering distributed filter is designed by employing stochastic copositive Lyapunov functions. All presented conditions are solvable in terms of linear programming. Under the designed disturbance observer and the distributed filter, the corresponding error system is stochastically stable. The filter design approach is also developed for discrete-time positive Markovian jump systems. The contribution of the paper lies in that: (i) A new adaptive event-triggering mechanism is established for positive systems, (ii) A positive disturbance observer is designed for the disturbance of positive Markovian jump systems, and (iii) The designed distributed filter can guarantee the stochastic stability of the error while existing filters in literature only achieve the stochastic gain stability of the error. Finally, two examples are given to illustrate the effectiveness of the proposed design.  相似文献   

11.
《Journal of The Franklin Institute》2022,359(18):11186-11207
This paper investigates the variable gain impulsive observer design problem for Lipschitz nonlinear systems. It is assumed that the measurements are contaminated by noise and received by observer at aperiodic instants. To establish a tractable design condition for impulsive observers, the piecewise linear interpolation method is used to construct the variable gain function. To quantify the impact of the measurement noises and exogenous disturbance on the estimation error, a Lyapunov-based condition for establishing exponential input-to-state stability (EISS) property of the observation error dynamics is presented. Then it is shown that the EISS condition can be expressed as a set of linear matrix inequalities (LMIs) by introducing a piecewise quadratic Lyapunov function. A convex optimization problem is proposed in which the EISS gain is minimized. Comparisons with the existing methods show the effectiveness of the proposed design technique.  相似文献   

12.
In this paper, the practically input-to-state stabilization issue is considered for the stochastic delayed differential systems (SDDSs) with exogenous disturbances. To reduce the transmission frequency of the feedback control signal, the proposed SDDSs are stabilized by an event-triggered strategy. The concept of the practically input-to-state stability (ISS) is used to describe the dynamic performance of control target in the event-triggered schemes and exogenous disturbances. Besides, the considered SDDSs is stabilized by an event-triggered feedback controller which is represented by linear matrix inequalities. Moreover, lower bound of the interaction time of the event-triggered control method is obtained to avoid the Zeno behavior of the proposed event-triggering scheme. Finally, the effectiveness of the conclusion is verified by a numerical example.  相似文献   

13.
In this paper, the problems of stochastic finite-time stability and stabilization of discrete-time positive Markov jump systems are investigated. To deal with time-varying delays and switching transition probability (STP), stochastic finite-time stability conditions are established under mode-dependent average dwell time (MDADT) switching signal by developing a stochastic copositive Lyapunov-Krasovskii functional approach. Then a dual-mode dependent output feedback controller is designed, thus stochastic finite-time stabilization is achieved based on linear programming technique. Finally, two examples are given to show the effectiveness of our results.  相似文献   

14.
This paper investigates practical stability problem for nonlinear impulsive stochastic delayed systems driven by G-Brownian motion (IGSDSs). Practical stability can describe quantitative properties and qualitative behavior in contrast to traditional Lyapunov stability theory. Based on G-Lyapunov function, Razumikhin-type theorem, G-Itô formula, Burkholder–Davis–Gundy (B-D-G) inequalities I & II and stochastic analysis technique, some new criteria for moment and quasi sure global practical uniform exponential stability of IGSDSs are proposed. Finally, two examples are presented to verify validity of our theoretical results.  相似文献   

15.
In this paper, the finite-time stability and asynchronous resilient control for a class of Itô stochastic semi-Markov jump systems are studied. Firstly, the sufficient conditions of the finite-time stability for stochastic semi-Markovian jump systems are given. Secondly, the state feedback and observer-based finite-time asynchronous resilient controllers are designed. By multiple Lyapunov functions approach, the sufficient conditions for the existence of these two types of controllers which make the system stochastically stabilizable in finite time are given. Compared with nonresilient case, the existence of the resilient controller can eliminate the influence of the uncertainties and get better results. Finally, a numerical example is given to verify the effectiveness of our results.  相似文献   

16.
A problem of stabilization about uncertain networked control systems (NCSs) with random but bounded delays is discussed in this paper. By using augmented state-space method, this class of problems can be modeled as discrete-time jump linear systems governed by finite-state Markov chains. A new switched model based on probability is proposed to research problems of reliable control when actuators become ageing or partially disabled. Using improved V-K iteration algorithm, a class of reliable controllers are designed to make systems asymptotically mean square stable under several stochastic disturbances such as random time-delay and stochastic actuator failure and the maximal redundancy degree is given through this method.  相似文献   

17.
This work aims to analyze the exponential stability of a non-linear impulsive neutral stochastic delay differential system. In this study, impulse perturbation is considered a delay-dependent state variable. The solution of the delay-dependent impulsive neutral stochastic delay differential system is associated with the solution of the system without impulses. First, we developed a relation connecting the solution of the neutral stochastic delay differential system without impulses and the solution of the corresponding system with impulses. Then, the conditions of the exponential stability of the proposed impulsive system are derived by determining the stability analysis of the respective system without impulse. The numerical approach for the neutral stochastic delay system without impulses is generated using the Euler-Maruyama method and adopted for the corresponding impulsive system. Finally, the achieved theoretical results are illustrated for applying the Malthusian single species neutral stochastic delay population model with immigration impulses.  相似文献   

18.
This paper deals with the stability and dissipative problem of a class of stochastic hybrid system. The system under study involves Markovian jump, impulsive effects and time delay, which are often encountered in practice and are the sources of instability. Our attention is focused on analysis of whether the stochastic hybrid system with time-delay is stochastically asymptotically stable and strictly (Q, S, R) dissipative. By introducing an extra artificial time instance, the equivalent system is obtained and the sufficient conditions are derived by using linear matrix inequality (LMI) techniques. The main results of this paper unify the existing results on H control.  相似文献   

19.
The property of input-to-state stability (ISS) of inertial memristor-based neural networks with impulsive effects is studied. Firstly, according to the characteristics of memristor and inertial neural networks, the inertial memristor-based neural networks are built. Secondly, based on the impulsive control theory, the average impulsive interval approach, Halanay differential inequality, Lyapunov method and comparison property, some sufficient conditions ensuring ISS of the inertial memristor-based neural networks under impulsive controller are derived. In this paper, we consider two types of impulse, stabilizing impulses and destabilizing impulses. When the inertial memristor-based neural networks are originally not ISS, by choosing a suitable lower bound of the average impulsive interval, the stabilizing impulses can be used to stabilize the inertial memristor-based neural networks. On the contrary, the inertial memristor-based neural networks are originally ISS, by restricting the upper bound of the average impulsive interval, the ISS of inertial memristor-based neural networks with destabilizing impulses can be ensured. Finally, numerical results are presented to illustrate the main results.  相似文献   

20.
This paper studies the stochastic stability problem for Markovian jump systems with unified uncertain transition rates via multiple integral techniques. The considered transition rates unify some existing ones in a framework, which are more general and practical. A multiple-integral-type Lyapunov–Krasovskii functional (MITLKF) is constructed, which contains more ply of integral terms than some existing ones. In order to obtain a tighter bound of the MITLKF, an auxiliary function-based multiple integral inequality (AFMII) is proposed, which encompasses some existing ones as its special cases. Based on these ingredients, a novel stability condition is derived for Markovian jump systems with the unified uncertain transition rates. The effectiveness of the proposed approach is demonstrated by two examples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号