首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a novel approach to stabilize a class of nonlinear systems with state constraints. The motivation behind this study is the need to develop a stabilizing state feedback controller that does not require the knowledge of Lyapunov function and can regulate the states to the equilibrium while meeting the constraints. By using an integration of two relatively new tools: immersion and invariance (I&I) theory and viability theory, a sufficient condition for stability and stabilizability of a general nonlinear affine system with state constraints is derived; Then, the related results are exploited to stabilize a class of nonlinear system in feedback form and with state constraints represented by inequalities and the viable I&I stabilizing state feedback controller is obtained constructively. Further, an application to a nonlinear aero-engine model with the temperature constraint is given to illustrate the applicability and the effectiveness of the proposed method. Finally, a comparative simulation is presented, highlighting the advantages of the viable I&I controller.  相似文献   

2.
《Journal of The Franklin Institute》2019,356(17):10564-10575
In this paper, a new event-trigger based probabilistic controller is designed using a scenario optimization approach for the robust stabilization of uncertain systems subject to nonlinear and unbounded uncertainties. Sufficient probabilistic stabilization conditions are derived under which the closed-loop system is ε level robust probabilistic stable. Based on these conditions, the design of the gains of the event-triggered state feedback controller is formulated and solved as an optimization problem involving linear matrix inequality. The applicability of theoretical results obtained is illustrated by a numerical example.  相似文献   

3.
This paper investigates the finite-time control problems for a class of discrete-time nonlinear singular systems via state undecomposed method. Firstly, the finite-time stabilization problem is discussed for the system under state feedback, and a finite-time stabilization controller is obtained. Then, based on which, the finite-time H boundedness problem is studied for the system with exogenous disturbances. Finally, an example of population distribution model is presented to illustrate the validity of the proposed controller. Because there is no any constraint for singular matrix E in the paper, controllers can be designed for more discrete-time nonlinear singular systems.  相似文献   

4.
In the present paper, the problem of designing a global sliding mode control scheme based on fractional operators for tracking a quadrotor trajectory is investigated. The model of the quadrotor system is given with disturbances and uncertainties. To converge in short finite time of the sliding manifold, a classical quadratic Lyapunov function was used and also a global stabilization of the quadrotor system is ensured. The proposed controller can be ensured the robustness against external disturbances and model uncertainties. Some scenarios are illustrated in this paper. Finally, a comparative study to three other controllers is provided to show the validity and feasibility of the proposed method.  相似文献   

5.
This paper investigates the fixed-time neural network adaptive (FNNA) tracking control of a quadrotor unmanned aerial vehicle (QUAV) to achieve flight safety and high efficiency. By combining radial basis function neural network (RBFNN) with fixed time adaptive sliding mode algorithm, a novel radial basis function neural network adaptive law is proposed. In addition, an extended state/disturbance observer (ESDO) is proposed to solve the problem of unmeasurable state and external interference, which can obtain reliable state feedback and interference input. Unlike most other ESO applications, this paper does not set the uncertainty model and external disturbances as total disturbances. Instead, the external disturbances are observed by extending the states and the observed states are fed back to the controller to cancel the disturbances. In view of the time-varying resistance coefficient and inertia torque in the QUAV model, the neural network is introduced so that the controller does not need to consider these nonlinear uncertainties. Finally, a numerical example is given to verify the effectiveness of the coupled non-simplified QUAV model.  相似文献   

6.
The problem of modeling and stabilization of a wireless network control system (NCS) is considered in this paper, where packet loss and time delay exist simultaneously in the wireless network. A discrete-time switched system with time-varying delay model is first proposed to describe the system closed by a static state feedback controller. A sufficient criteria for the discrete-time switched system with time-varying delay to be stable is proposed, based on which, the corresponding state feedback controller is obtained by solving a set of linear matrix inequalities (LMIs). Numerical examples show the effectiveness of the proposed method.  相似文献   

7.
This paper proposes a robust feedback controller using Linear Matrix Inequalities (LMIs) formulation for the stabilization of an underactuated mechanical system, namely the Inertia Wheel Inverted Pendulum (IWIP), in its upright position. Such mechatronic system is subject to state constraints, external disturbances and norm-bounded parametric uncertainties. The main idea to solve the stabilization problem lies in the use of the S-procedure Lemma. Such problem is then transformed into a solving problem of Bilinear Matrix Inequalities (BMIs). Through the Schur complement Lemma and the Matrix Inversion Lemma, a linearization procedure is employed to transform the BMIs into LMIs. Some improvements and comparisons with other LMI-based design techniques without state constraints are developed and discussed. An extensive portfolio of numerical studies is presented. The effectiveness and robustness of the proposed feedback controller toward uncertainties in the friction parameters and external disturbances are illustrated through simulation results.  相似文献   

8.
杨军  张兴照  陈为胜 《科技通报》2007,23(6):885-890,897
针对一类严格反馈随机时滞非线性系统,提出了一种状态反馈镇定方案。在系统非线性函数满足线性增长条件的假设下,基于反推技术和占优方法设计了一个无记忆线性状态反馈控制器。通过构建一个四次Lyapunov-Krasoviskii泛函,证明了闭环系统在概率意义下全局渐近稳定,仿真实例说明了方案的可行性。  相似文献   

9.
This paper deals with the design and implementation of a nonlinear control algorithm for the attitude tracking of a four-rotor helicopter known as quadrotor. This algorithm is based on the second order sliding mode technique known as Super-Twisting Algorithm (STA) which is able to ensure robustness with respect to bounded external disturbances. In order to show the effectiveness of the proposed controller, experimental tests were carried out on a real quadrotor. The obtained results show the good performance of the proposed controller in terms of stabilization, tracking and robustness with respect to external disturbances.  相似文献   

10.
This paper considers the simultaneous stabilization of a set of nonlinear systems, that involve uncertain nonlinearities besides multiple time-varying delays in the states. Under the assumption that the upper bounds of delays are known, a memoryless simultaneously stabilizing state feedback controller is presented by proposing a control Lyapunov-Krasovskii functional (CL-KF) method. As required to establish the CL-KF approach, a systematic procedure is given to construct CL-KFs for the systems under consideration. By the obtained CL-KFs, a common stabilizing state feedback control law is established to drive all the systems to the origin. Examples are finally given to verify the benefit of the proposed design method.  相似文献   

11.
This paper investigates the problem of global output feedback stabilization for a class of nonlinear systems with multiple uncertainties. A remarkable feature lies in that the system to be considered is not only involved dynamic and parametric uncertainties but also the measurement output affected by an uncertain continuous function, which leads to the obstacles in the constructions of a state observer and a controller. By revamping the double-domination approach with the skillful implantation of a dynamic gain scheme and nonnegative integral functions, a new design strategy is established by which a global output feedback stabilizer together with a novel state observer can be constructed successfully. The novelty of the presented design is attributed to a perspective in dealing with the output feedback stabilization undergone the unknown continuous (time-varying) output function and dynamic/parametric uncertainties. Finally, an illustrative example is provided to illustrate the effectiveness of the theoretical results.  相似文献   

12.
This paper focuses on an output feedback stabilization problem for a class of switched nonlinear systems in non-strict feedback form under asynchronous switching via sampled-data control. Since the output of the considered systems is measurable only at the sampling instants, an observer is designed with a tunable scaling gain to estimate the state, and then a sampled-data controller is constructed with the sampled estimated state. As a distinctive feature, a merging virtual switching signal is introduced to describe the asynchronous switching generated by detecting the activation of the subsystem. By choosing an appropriate Lyapunov function, it is proved that the constructed controller with dwell time constraint can globally stabilize the considered systems under asynchronous switching. Finally, the effectiveness of the proposed method is illustrated by two examples.  相似文献   

13.
This paper is concerned with the problem of global asymptotical tracking of single-input single-output (SISO) nonlinear time-delay control systems. Based on the input-output feedback linearization technique and Lyapunov method for nonlinear state feedback synthesis, a robust globally asymptotical output tracking controller design methodology for a broad class of nonlinear time-delay control systems is developed. The underlying theoretical approaches are the differential geometry approach and the composite Lyapunov approach. One utilizes the parameterized co-ordinate transformation to transform the original nonlinear system into singularly perturbed model and the composite Lyapunov approach is then applied for output tracking. For the view of practical application, the proposed control methodology has been successfully applied to the famous nonlinear automobile idle-speed control system.  相似文献   

14.
This paper addresses distributed formation control for a group of quadrotor unmanned aerial vehicles (UAVs) under Markovian switching topologies with partially unknown transition rates. Instead of the general stochastic topology, the graph is governed by a set of Markov chains to the edges, which can recover the traditional Markovian switching topologies in line with the practical communication network. Extended high gain observers (EHGOs) are constructed with a two-time-scale format to deal with the issue of nonlinear input coefficients, so that there could be a higher estimation precision of the system uncertainties. To impel multiple quadrotor UAVs to achieve a predesigned formation shape, a modified integral sliding mode (ISM) control protocol is proposed here with a multi-time-scale structure, which allows independent analysis of the dynamics in each time scale. The stability proof for the system state space origin is derived from the singular perturbation method and Lyapunov stability theory. In addition, the introduced ISM controller can deal with the time varying desired references with the bounded accelerations and is robust to the disturbances. Finally, simulations on six quadrotor UAVs are given to verify the effectiveness of the theoretical results.  相似文献   

15.
This paper studies the global sampled-data output feedback stabilization problem for a class of stochastic nonlinear systems. The considered system is in non-strict feedback form with unknown time-varying delay. A state observer is introduced to estimate the unmeasured states. With the help of the backstepping method, a linear sampled-data output feedback controller is constructed. By choosing an appropriate Lyapunov–Krasoviskii functional and an allowable sampling period, it is shown that the stochastic system can be globally asymptotically stabilized in the mean square sense under the developed control scheme. Finally, two examples are presented to verify the effectiveness of the designed control scheme.  相似文献   

16.
This paper studies the problem of decentralized stabilization for a class of large-scale stochastic high-order time-delay feedforward nonlinear systems. A series of delay-independent state feedback controllers is constructed, which is based on the approach of adding one power integrator. The stochastically global asymptotic stability (GAS) of the closed-loop system under the above-mentioned controllers is proved by Lyapunov–Krasovskii theorem and homogeneous domination approach. A simulation example is given to illustrate the effectiveness of the results of this paper.  相似文献   

17.
The problem of position tracking for a tank gun control system with inertia uncertainty and external disturbance is investigated in this paper. The tank gun control system, demanding high tracking precision and stabilization precision, is a nonlinear system. Classical control methods are commonly used in the actual system, which is difficult to ensure high precision and high disturbance rejection capability. An active disturbance rejection control (ADRC) scheme is applied to guarantee the state variables of the closed loop system to converge to the reference state with the help of the extended state observer by estimating the inertia uncertainty and external disturbance. The basic theory of the ADRC is introduced here. According to the mathematical model, the parameters of ADRC are designed. Also, simulation results show that ADRC controller has advantages of high precision and high disturbance rejection ability. A comparison between ADRC and PID is also presented to show the effectiveness of the ADRC control strategy.  相似文献   

18.
This paper is concerned with stability analysis and stabilization of time-varying delay discrete-time systems in Lyapunov-Krasovskii stability analysis framework. In this regard, a less conservative approach is introduced based on non-monotonic Lyapunov-Krasovskii (NMLK) technique. The proposed method derives time-varying delay dependent stability conditions based on Lyapunov-Krasovskii functional (LKF), which are in the form of linear matrix inequalities (LMI). Also, a PID controller designing algorithm is extracted based on obtained NMLK stability condition. The stability of the closed loop system is guaranteed using the designed controller. Another property that is important along with the stability, is the optimality of the controller. Thus, an optimal PID designing technique is introduced in this article. The proposed method can be used to design optimal PID controller for unstable multi-input multi-output time-varying delay discrete-time systems. The proposed stability and stabilization conditions are less conservative due to the use of non-monotonic decreasing technique. The novelty of the paper comes from the consideration of non-monotonic approach for stability analysis of time-varying delay discrete-time systems and using obtained stability conditions for designing PID controller. Numerical examples and simulations are given to evaluate the theoretical results and illustrate its effectiveness compared to the existing methods.  相似文献   

19.
In this paper, we will consider how to stabilize a mathematical model, the Kolmogorov model, of the interactions of an n species population. The Lotka–Volterra model is a particular case of the more general Kolmogorov model. We first identify the unstable steady states of the model, then we use the feedback control based on the solutions of the Riccati equation to stabilize the linearized system. Finally we stabilize the nonlinear system by using the feedback controller obtained in the stabilization of the linearized system. We introduce the backward Euler method to approximate the feedback control nonlinear system and obtain the error estimates. Four numerical examples are given which come from the application areas.  相似文献   

20.
The problem of stabilization of a linear system that is asymptotic null controllable with bounded control is studied in this paper. By combining the parametric Lyapunov equation approach and the gain scheduling technique, a new observer-based output feedback gain scheduling controller is proposed to solve the semi-global stabilization problem for a linear system subject to actuator saturation. By scheduling the design parameters online the convergence rate of the state can be improved. Numerical simulations for a spacecraft rendezvous system show the effectiveness of the proposed approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号