首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, an asymptotic adaptive dynamic surface tracking control strategy is investigated for uncertain full-state constrained nonlinear systems subject to parametric uncertainties and external disturbances. A novel disturbance estimator (DE) is firstly used to compensate for external disturbances. The parametric uncertainties are accordingly handled via a synthesized adaptive law. Then, by using the barrier Lyapunov function (BLF) and dynamic surface control (DSC), an appropriate backstepping design framework employing a novel adaptive-gain nonlinear filter is given, which avoids the “explosion of complexity” and relieves the conservatism of filter gain selection. The theoretical analysis reveals the asymptotic tracking performance is assured with the proposed controller. In the end, some simulation cases demonstrate the validity of the proposed controller.  相似文献   

2.
非线性不确定系统的模糊自适应 输出反馈跟踪   总被引:2,自引:0,他引:2  
本文研究了非仿射非线性系统的模糊自适应 输出反馈跟踪。在非仿射非线性模型存在不确定的情况下,使用模糊自适应控制器对系统进行控制,并基于Lyapunov稳定性定理得出自适应律。通过解一个代数Riccati方程实现了 跟踪性能。估计状态通过引入高增益观测器得到,实现了系统的输出反馈控制。最后,通过对一个数值例子的仿真验证了算法的有效性。  相似文献   

3.
This paper is concerned with event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. The approach of fuzzy logic systems (FLSs) approximation is extended to high-order stochastic nonlinear systems to deal with the unknown nonlinear uncertainties. A novel high-order adaptive fuzzy tracking controller is firstly presented via a backstepping approach and event-triggering mechanism which can mitigate the unnecessary waste of computation and communication resources. Based on the above techniques, frequently-used growth assumptions imposed on unknown system nonlinearities are removed and the influence for the high order is handled. The proposed high-order adaptive fuzzy tracking control method not only deals with the influence of high order, but also ensures that the tracking error converges to a small neighborhood of the origin in probability. Finally, the effectiveness of the proposed control method is illustrated by a numerical example.  相似文献   

4.
This paper is concerned with the adaptive control problem of a class of output feedback nonlinear systems with unmodeled dynamics and output constraint. Two dynamic surface control design approaches based on integral barrier Lyapunov function are proposed to design controller ensuring both desired tracking performance and constraint satisfaction. The radial basis function neural networks are utilized to approximate unknown nonlinear continuous functions. K-filters and dynamic signal are introduced to estimate the unmeasured states and deal with the dynamic uncertainties, respectively. By theoretical analysis, the closed-loop control system is proved to be semi-globally uniformly ultimately bounded, while the output constraint is never violated. Simulation results demonstrate the effectiveness of the proposed approaches.  相似文献   

5.
This study carries out the problem of adaptive backstepping fuzzy tracking control for a class of full state constrained uncertain nonlinear system with unknown control directions. Based on Nussbaum-type functions and tan-type Barrier Lyapunov functions, a novel adaptive fuzzy tracking controller is proposed to guarantee that the system output tracking error asymptotically converges to zero, while the constraints on the states of system will not be violated during operation. Compared with the existing results, a better convergence effect is obtained for this class of systems. Stability analysis of the proposed closed-loop control system is supported by the Lyapunov stability theory. Finally, a simulation example is presented to illustrate the effectiveness of the proposed control strategy.  相似文献   

6.
In this paper, an adaptive fuzzy decentralized control method is proposed for accommodating actuator faults for a class of uncertain nonlinear large-scale systems. The considered faults are modeled as both loss of effectiveness and lock-in-place. With the help of fuzzy logic systems to approximate the unknown nonlinear functions, the novel adaptive fuzzy faults-tolerant decentralized controllers are constructed by combining the backstepping technique and the dynamic surface control (DSC) approach. It is proved that the proposed control approach can guarantee that all the signals of the resulting closed-loop systems are bounded and the tracking errors converge to a small neighborhood of zero. Simulation results are provided to show the effectiveness of the control approach.  相似文献   

7.
In this paper, a novel error-driven nonlinear feedback technique is designed for partially constrained errors fuzzy adaptive observer-based dynamic surface control of a class of multiple-input-multiple-output nonlinear systems in the presence of uncertainties and interconnections. There is no requirements that the states are available for the controller design by constructing fuzzy adaptive observer, which can online identify the unmeasurable states using available output information only. By transforming partial tracking errors into new error variables, partially constrained tracking errors can be guaranteed to be confined in pre-specified performance regions. The feature of the error-driven nonlinear feedback technique is that the feedback gain self-adjusts with varying tracking errors, which prevents high-gain chattering with large errors and guarantees disturbance attenuation with small errors. Based on a new non-quadratic Lyapunov function, it is proved that the signals in the resulted closed-loop system are kept bounded. Simulation and comparative results are given to demonstrate the effectiveness of the proposed method.  相似文献   

8.
The current paper addresses the fuzzy adaptive tracking control via output feedback for single-input single-output (SISO) nonlinear systems in strict-feedback form. Under the situation of system states being unavailable, the system output is used to set up the state observer to estimate the real system states. Furthermore, the estimation states are employed to design controller. During the control design process, fuzzy logic systems (FLSs) are used to model the unknown nonlinearities. A novel observer-based finite-time tracking control scheme is proposed via fuzzy adaptive backstepping and barrier Lyapunov function approach. The suggested fuzzy adaptive output feedback controller can force the output tracking error to meet the pre-specified accuracy in a fixed time. Meanwhile, all the closed-loop variables are bounded. Compared to some existing finite-time output feedback control schemes, the developed control strategy guarantees that the settling time and the error accuracy are independent of the uncertainties and can be specified by the designer. At last, the effectiveness and feasibility of the proposed control scheme are demonstrated by two simulation examples.  相似文献   

9.
This paper focuses on an adaptive fuzzy fixed-time control problem for stochastic nonstrict nonlinear systems with unknown dead-zones by using dynamic surface control (DSC) technology. Fuzzy logic systems (FLSs) and DSC technology are used to approximate nonlinear functions and reduce the computational complexity, respectively. At the same time, the influence of the dead-zone disturbance is offset by transforming the dead-zone model into the nonlinear model that can be approximated by the FLSs. Then, based on the fixed-time stability theory, an adaptive fuzzy fixed-time tracking control strategy is proposed, which can ensure semi-global practical fixed-time stability of the system and the tracking error converging to a small neighborhood near the origin. Finally, two simulation examples are given to prove the effectiveness of the proposed control strategy.  相似文献   

10.
A global decentralized low-complexity tracker design methodology is proposed for uncertain interconnected high-order nonlinear systems with unknown high powers. It is assumed that interconnected nonlinearities are bounded by completely unknown nonlinearities, rather than, a linear combination of high-ordered state variables. Compared with the existing decentralized results for interconnected nonlinear systems with known high powers, the decentralized robust controller, which achieves the pre-designable transient and steady-state tracking performance for each subsystem, is designed by employing nonlinear error surfaces with time-varying performance functions, regardless of unknown nonlinear interactions and high powers related to virtual and actual control variables. The proposed decentralized continuous robust low-complexity tracker is realized without the use of any adaptive or function approximation techniques for estimating unknown parameters and nonlinearities. The stability and preassigned tracking performance of the resulting decentralized low-complexity control system are thoroughly analyzed in the Lyapunov sense. Finally, simulation results on coupled underactuated mechanical systems are provided to show the effectiveness of the proposed theoretical result.  相似文献   

11.
In this paper, a novel approach for the design of an indirect adaptive fuzzy output tracking excitation control of power system generators is proposed. The method is developed based on the concept of differentially flat systems through which the nonlinear system can be written in canonical form. The flatness-based adaptive fuzzy control methodology is used to design the excitation control signal of a single machine power system in order to track a reference trajectory for the generator angle. The considered power system can be written in the canonical form and the resulting excitation control signal is shown to be nonlinear. In case of unknown power system parameters due to abnormalities, the nonlinear functions appearing in the control signal are approximated using adaptive fuzzy systems. Simulation results show that the proposed controller can enhance the transient stability of the power system under a three-phase to ground fault occurring near the generator terminals.  相似文献   

12.
In this paper, the problem of adaptive fuzzy fault-tolerant control is investigated for a class of switched uncertain pure-feedback nonlinear systems under arbitrary switching. The considered actuator failures are modeled as both lock-in-place and loss of effectiveness. By utilizing mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Under the framework of backstepping design technique and common Lyapunov function (CLF), an adaptive fuzzy fault-tolerant control (FTC) method with predefined performance bounds is developed. It is proved that under the proposed controller, all the signals of the close-loop systems are bounded and the state tracking error for each step remains within the prescribed performance bound (PPB) regardless of actuator faults and the system switchings. In addition, the tracking errors and magnitudes of control inputs can be reduced by adjusting the PPB parameters of errors in the first and last steps. The simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

13.
This paper concerns an adaptive fuzzy tracking control problem for a class of switched uncertain nonlinear systems in strict-feedback form via the modified backstepping technique. The unknown nonlinear functions are approximated by the generalized fuzzy hyperbolic model (GFHM). It is shown that if the designed parameters in the controller and adaptive laws are appropriately selected, then all closed-loop signals are bounded and the stability of the system can be kept under average dwell time methods. In the end, simulation studies are presented to illustrate the effectiveness of the proposed method.  相似文献   

14.
In this paper, an adaptive finite-time funnel control for non-affine strict-feedback nonlinear systems preceded by unknown non-smooth input nonlinearities is proposed. The input nonlinearities include backlash-like hysteresis and dead-zone. Unknown nonlinear functions are handled using fuzzy logic systems (FLS), based on the universal approximation theorem. An improved funnel error surface is utilized to guarantee the steady-state and transient predetermined performances while the differentiability problem in the controller design is averted. Using the Lyapunov approach, all the adaptive laws are extracted. In addition, an adaptive continuous robust term is added to the control input to relax the assumption of knowing the bounds of uncertainties. All the signals in the closed-loop system are shown to be semi-globally practically finite-time bounded with predetermined performance for output tracking error. Finally, comparative numerical and practical examples are provided to authenticate the efficacy and applicability of the proposed scheme.  相似文献   

15.
This paper studies the adaptive fuzzy fault-tolerant control design problem for a class of stochastic multi-input and multi-output (MIMO) nonlinear systems in pure-feedback form. The nonlinear systems under study contain unknown functions, unmeasured states and actuator faults, which are described by the loss of effectiveness and lock-in-place modes. With the help of fuzzy logic systems identifying uncertain stochastic nonlinear systems, a fuzzy state observer is established for estimating the unmeasured states. Based on the backstepping design technique with the nonlinear tolerant-fault control theory, an adaptive fuzzy output feedback faults-tolerant control approach is developed. It is proved that the proposed fault-tolerant control approach can guarantee that all the signals of the resulting closed-loop system are bounded in probability. Moreover, the observer errors and tracking errors can be regulated to a small neighborhood of the origin by choosing design parameters appropriately. A simulation example is provided to show the effectiveness of the proposed approach.  相似文献   

16.
The adaptive asymptotic tracking control problem for a class of stochastic non-strict-feedback switched nonlinear systems is addressed in this paper. For the unknown continuous functions, some neural networks are used to approximate them online, and the dynamic surface control (DSC) technique is employed to develop the novel adaptive neural control scheme with the nonlinear filter. The proposed controller ensures that all the closed-loop signals remain semiglobally bounded in probability, at the same time, the output signal asymptotically tracks the desired signal in probability. Finally, a simulation is made to examine the effectiveness of the proposed control scheme.  相似文献   

17.
In the present study, a novel technique is suggested for the adaptive non-linear model predictive control based on the fuzzy approach in three stages. In the presented approach, in the first stage, the prediction and control horizons are obtained from a fuzzy system in each control step. Another fuzzy system is employed to determine the weight factors before the optimization stage of developing new controller. The proposed controller gives the parameters of the model predictive control (MPC) in each control step in order to improve the performance of nonlinear systems. The proposed control scheme is compared with the traditional MPC and Generic Model Control for controlling MED-TVC process. The performances of the three proposed controllers have been investigated in the absence and presence of disturbance in order to evaluate the stability and robustness of the proposed controllers. The results reveal that the novel adaptive controller based on fuzzy approach performs better than the two other controllers in set-point tracking and disturbance rejection with lower IAE criteria. In addition, the average computational time for the adaptive MPC exhibits a decline of 34% in comparison with the traditional MPC.  相似文献   

18.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

19.
This paper is concerned with the problem of adaptive event-triggered (AET) based optimal fuzzy controller design for nonlinear networked control systems (NCSs) characterized by Takagi–Sugeno (T–S) fuzzy models. An improved AET communication scheme with a memory adaptive rule is proposed to enhance the utilization of the state response vertex data. Different from the existing ET based results, the improved AET scheme can save more communication resources and acquire better system performance. The sufficient criteria of performance analysis and controller design are presented for the closed-loop control system subject to mismatched membership functions (MFs) and AET scheme. And then, a new MFs online learning algorithm on the basis of the gradient descent approach is employed to optimize the MFs of fuzzy controller and obtain optimal fuzzy controller for further improving system performance. Finally, two simulation examples are presented to verify the advantage and effectiveness of the provided controller design technique.  相似文献   

20.
In this paper, a solution for improvement of transient performance in adaptive control of nonlinear systems is proposed. An optimal adaptive controller based on a reset mechanism and a prescribed performance bound is devised. The suggested controller has the structure of adaptive backstepping controller in which the estimated parameters are reset to an optimal value. The designed controller ensures both the transient bound and the asymptotical convergence of the states. It is shown that the tracking error satisfies the prescribed performance bound all the time, besides the speed of the convergence rate is increased by resetting the estimated parameters. The results have been proved through both the analytical and simulation studies. The proposed method is applied to an Augmented Quarter Car Model as a case study. Simulation results verify the established theoretical consequences that the prescribed performance bound based optimal adaptive reset controller can enhance the transient performance of the adaptive controller.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号