首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
In this paper, the problem of synchronization on interval type-2 (IT2) stochastic fuzzy complex dynamical networks (CDNs) with time-varying delay via fuzzy pinning control is fully studied. Firstly, a more general complex network model is considered, which involves the time-varying delay, IT2 fuzzy and stochastic effects. More specifically, IT2 fuzzy model, as a meaningful fuzzy scheme, is investigated for the first time in CDNs. Then, with the aid of Lyapunov stability theory and stochastic analysis technique, some new sufficient criteria are established to ensure synchronization of the addressed systems. Moreover, on basis of the parallel-distributed compensation (PDC) scheme, two effective fuzzy pinning control protocols are proposed to achieve the synchronization. Finally, a numerical example is performed to illustrate the effectiveness and superiority of the derived theoretical results.  相似文献   

2.
This paper investigates a stochastic impulsive coupling protocol for synchronization of linear dynamical networks based on discrete-time sampled-data. The convergence of the networks under the proposed protocol is discussed, and some sufficient conditions are showed to guarantee almost sure exponential synchronization. Moreover, this coupling protocol with a pinning control scheme is developed to lead the state of all nodes to almost sure exponentially converge to a virtual synchronization target. It is shown that the almost sure exponential synchronization can be achieved by only interacting based on the stochastic feedback information at discrete-time instants. Some numerical examples are finally provided to present the effectiveness of the proposed stochastic coupling protocols.  相似文献   

3.
In complex networks, asymptotic properties play an important role in modeling, analysis and design in both aspects of theory and practice. In this paper, our focus is on exponential synchronization for a class of complex networks. Under certain conditions, a feedback control and stochastic periodically intermittent noise are designed to synchronize the networks. Such synchronization scheme needs less control energy due to the usage of the intermittent noise. The threshold of intermittent rate for synchronization scheme is derived. Moreover, the noise states are observed in discrete-time mode, which reduces the complexity and the computation burden for continuous observations. The observation supremum is obtained by solving a transcendental equation. Finally, a simulation example is provided, and the comparison results with some existing methods illustrate the effectiveness and advantages of the proposed new design strategy.  相似文献   

4.
This paper investigates the problem of cluster synchronization of complex dynamical networks with noise and time-varying delays by using a delayed pinning impulsive control scheme. Different from the traditional impulsive control schemes without the effects of input delays, it designs a pinning impulsive control scheme to successfully address the aforementioned problem subject to impulsive input delays. By employing a time-dependent Lyapunov function and the mathematical induction, some novel criteria are established to guarantee the cluster synchronization of the noisy complex networks, revealing the closed relationship between the synchronization performance and the related factors, including the impulsive input delays, the number of the pinned nodes, the frequency and strength of the impulsive control, and the noisy perturbations. Some numerical examples and computer simulations are presented to illustrate the effectiveness of the theoretical results.  相似文献   

5.
In this paper, the problem of pinning and impulsive synchronization between two complex dynamical networks with non-derivative and derivative coupling is investigated. A hybrid controller, which contains a pinning controller and a pinning impulsive controller, is proposed simultaneously. Based on the Lyapunov stability theory and mathematical analysis technique, some novel criteria of synchronization are derived, which can guarantee that the response network asymptotically synchronizes to the drive network by combining pinning control and pinning impulsive control. Moreover, the restrictions about non-derivative coupling matrix, impulsive intervals and the number of pinned nodes are removed. Numerical examples are presented finally to illustrate the effectiveness of the theoretical results.  相似文献   

6.
This paper concerns the exponential synchronization problem of stochastic complex networks with multiple weights (SCNMW). By the method of network split, SCNMW can be modelled as stochastic coupled systems driven by Brownian motion. By combining graph theory, Lyapunov stability theory and state feedback control technique, drive-response synchronization criteria of SCNMW have been obtained. Two kinds of exponential synchronization criteria are obtained, one is given with Lyapunov functions of vertex systems, and the other is shown with the coefficients of SCNMW. The obtained synchronization principles are closely related to the coupling strength of multiple sub-networks and the intensity of noise perturbation. Finally, a numerical example with some simulations is presented to illustrate the theoretical results.  相似文献   

7.
In this paper, finite-time synchronization problem is considered for a class of Markovian jump complex networks (MJCNs) with partially unknown transition rates. By constructing the suitable stochastic Lyapunov–Krasovskii functional, using finite-time stability theorem, inequality techniques and the pinning control technique, several sufficient criteria have been proposed to ensure the finite-time synchronization for the MJCNs with or without time delays. Since finite-time synchronization means the optimality in convergence time and has better robustness and disturbance rejection properties, this paper has important theory significance and practical application value. Finally, numerical simulations illustrated by mode jumping from one mode to another according to a Markovian chain with partially unknown transition probability verify the effectiveness of the proposed results.  相似文献   

8.
In this paper, the mean-square exponential synchronization of stochastic multilayer networks with white-noise-based time-varying coupling is investigated via intermittent dynamic periodic event-triggered control. The existence of a dynamic term can reduce the number of event triggers. Furthermore, by introducing periodic sampling mechanism, a minimum inter-execution time is guaranteed to avoid Zeno phenomenon. Additionally, by employing Lyapunov method, graph theory, and stochastic analysis techniques, synchronization criteria for multilayer networks under intermittent dynamic periodic event-triggered control are established. To clarify the process of synchronization of multilayer networks, a brief framework is developed on the basis of Tajan’s algorithm. Ultimately, theoretical results are applied into Chua’s circuits and corresponding numerical simulations are given to illustrate the effectiveness and feasibility of the results.  相似文献   

9.
The present study investigates the fixed-time synchronization issue for delayed complex networks under intermittent pinning control. Different from some existing semi-intermittent controllers for finite/fixed-time synchronization, our pinning controller is designed in a complete intermittent way. In order to address the encountered theoretical analysis difficulties, a new differential inequality lemma is developed, which is suitable for the fixed-time synchronization studies under periodic or aperiodic complete intermittent control. Then, by using Lyapunov theory and pinning control approach, sufficient conditions are proposed which can guarantee the aperiodically completely intermittent-controlled delayed complex networks realizing fixed-time pinning synchronization. Moreover, the settling time is explicitly estimated, which is irrelevant to the initial values of our network systems. Additionally, as a special case, the scenario of periodic complete intermittent control is also discussed. At last, some simulation examples are utilized to confirm our theoretical outcomes.  相似文献   

10.
In this paper, the synchronization problem is studied for a class of stochastic discrete-time complex networks with partial mixed impulsive effects. The involving impulsive effects, called partial mixed impulses, can be regarded as local and time-varying impulses, which means that impulses are not only injected into a fraction of nodes in networks but also contain synchronizing and desynchronizing impulses at the same time. In order to handle this case, several mathematical techniques are proposed to tackle mixed impulsive effects in discrete-time dynamical systems. Based on the variation of parameters formula, several sufficient criteria are derived to ensure that synchronization of the addressed networks can be achieved in mean square. The obtained criteria not only rely on the strengths of mixed impulses and the impulsive intervals, but also can reduce conservativeness. Finally, a numerical example is presented to show the effectiveness of our results for neural networks.  相似文献   

11.
In this paper, the secure synchronization control problem of a class of complex time-delay dynamic networks (CTDDNs) under denial of service (DoS) attacks is studied. Based on the pinning control strategy, a non-fragile sampling controller is designed for a small number of nodes in the complex network. It can effectively solve the problem of limited communication resources and has good anti-interference performance. In order to resist the influence of DoS attacks, an improved comparator algorithm is designed to obtain the specific information of DoS attacks, including the upper and lower bounds of the DoS attacks duration, the DoS attacks frequency and the specific active/sleeping interval of DoS attacks. Based on Lyapunov stability theory and by designing the pinning non-fragile sampling controller, new security synchronization criteria are established for CTDDNs. Finally, two numerical examples are given to verify the validity of the theories.  相似文献   

12.
This paper investigates the problem of finite-time outer-synchronization for discrete-time complex networks with Markov jump topology in the presence of communication delays and possible information losses and its application to image encryption. A hybrid control, which is subject to both stochastic jumps and deterministic switches, is proposed to realize finite-time and stochastic outer-synchronization for the concerned networks. By utilizing a stochastic Lyapunov functional combined with the average dwell-time method, sufficient conditions are found such that the synchronization error dynamical system is stochastically stable in finite-time. Two numerical examples are presented to illustrate the effectiveness of the proposed method. Finally, the complex network consists of four coupled Lorenz systems are utilized to generate chaotic sequences and a new chaotic image cryptosystem is constructed to transmit encrypted images based on the synchronized drive-response complex networks. Experiments are conducted by using numerical simulation, and the security is analyzed in terms of key space, key sensitivity, histogram distributions, correlation coefficients, information entropy and differential attack measures. The experimental results show that the proposed chaotic image cryptosystem has the advantages of high security against some classical attacks.  相似文献   

13.
This paper investigates global asymptotical synchronization between fractional-order memristor-based neural networks (FMNNs) with multiple time-varying delays (MTDs) by pinning control. Two classes of coupling manners, static manner and dynamic manner, are introduced into the pinning controller respectively. For the case of static coupling, to make the controller exclude fraction, 1-norm Lyapunov function and fractional Halanay inequality in MTDs case are utilized for synthesis of controller and convergence analysis of synchronization error. For the case of dynamic coupling, a fractional differential inequality is proved and discussed in an elaborate way, and then global asymptotical synchronization is analyzed by means of Lyapunov-like function and the newly-proved inequality. Lastly, numerical simulations are carried out to show the practicability of the pinning controllers and the feasibility of the obtained synchronization criteria.  相似文献   

14.
The global synchronization problem of multiple discrete-time memristor-based neural networks (DTMNNs) with stochastic perturbations and mixed delays is studied under impulse-based coupling control, where the coupling control only occurs at discrete impulse times. The impulse-based coupling control will further reduce the communication bandwidth for multiple DTMNNs to achieve coupling synchronization. We construct an array of multiple DTMNNs with stochastic perturbations and mixed delays and propose a novel impulse-based coupling control scheme. By utilizing Lyapunov–Krasovskii functional technique, schur complement technique and linear matrix inequality (LMI) method, some sufficient synchronization conditions depending on stochastic perturbations and mixed delays are established. At the end of this paper, a numerical example is given and the effectiveness of the impulse-based coupling control is illustrated by using MATLAB programming.  相似文献   

15.
This paper investigates the synchronization problems for the multiplex networks with both inter-layer and intra-layer couplings subject to the stochastic perturbations. In particular, the topologies of all layers are not the same, so the model can represent a class of multiplex networks. To synchronize the multiplex networks onto the trajectory of a virtual leader, a pinning adaptive protocol is proposed and some pinning criteria are derived for guaranteeing complete synchronization. Furthermore, when the results are extended to the systems with time delays, the pinning adaptive strategy is still proved to be effective. Finally, a two-layer network and a three-layer network are selected for numerical simulations to illustrate the theoretical results.  相似文献   

16.
In this paper, the synchronization control problem is considered for the delayed hybrid-coupled heterogeneous networks, i.e., complex networks with nonidentical dynamical nodes. Some effective control schemes are designed under which the whole network is globally asymptotically synchronized to an arbitrary objective trajectory. By imposing the open-loop control on the whole network together with the feedback control only on a small fraction of the nodes, an easy-to-verify sufficient condition is derived to guarantee the asymptotic synchronization of the complex network under study. Furthermore, to decrease the feedback control gains, the idea of adaptive control scheme is combined together, and the verified conditions are further weakened. Finally, by introducing the impulses to the open-loop network and using the improved Halanay inequality, other novel synchronization criteria are developed for the complex network. Comparisons of the obtained theoretical results as well as the detail pinning schemes are also given. Numerical examples of the undirected scale-free network and the directed small-world network are illustrated to demonstrate the applicability and efficiency of the proposed theoretical results.  相似文献   

17.
This paper considers the finite-time synchronization problem for a class of fractional-order complex dynamical networks (FOCDNs). By utilizing the properties of fractional calculus and fractional-order comparison principle, we propose a new lemma. Base on the new lemma, some analysis techniques and algebraic graph theory method, some novel criteria are given to ensure finite-time synchronization of FOCDNs, and the upper bound of the setting time for synchronization is estimated. At last, numerical simulations are given to verify the effectiveness of the obtained results.  相似文献   

18.
In this article, without decomposing the quaternion-valued neural networks (QVNNs) into two complex-valued subsystems or four real-valued subsystems, quasi-projective synchronization of discrete-time fractional-order QVNNs is investigated. To this end, the sign function for quaternion number is introduced and some related properties are given. Then, two inequalities are built according to the nabla fractional difference and quaternion theory. Subsequently, a simple linear quaternion-valued controller is designed, and some synchronization conditions are given by means of our created inequalities. Finally, numerical simulations are given to prove the feasibility and correctness of the theoretical results.  相似文献   

19.
This paper investigates cluster synchronization in community networks with nonidentical nodes. Several effective strategies to enhance the coupling weights are designed. For the first time, adaptive enhancing factor method combined with edge-based pinning control is adopted to achieve synchronization. Furthermore, distributed adaptive pinning control scheme is adopted based on the local information of node dynamics. Noticeably, only the coupling weights of spanning trees in each community are tuned, which are low-cost and more practicable. Based on Lyapunov stability theory, some sufficient conditions for cluster synchronization are derived. Numerical simulations are provided to verify the effectiveness of the theoretical results.  相似文献   

20.
The event-triggered synchronization control problem is concerned for a class of complex networks with nonlinearly coupling function and adaptive coupling strength. Given a state-based event-trigger mechanism and the threshold, an event-triggered control method is introduced to make complex networks achieve exponential synchronization. By combining the Lyapunov stability theory and the knowledge of graph theory, a sufficient condition is established such that complex networks can achieve exponential synchronization. Then, the feasibility of the event-triggered control is analyzed. Moreover, the second-order Kuramoto oscillators is taken into account. And the event-triggered control strategy is used to make the oscillators achieve exponential synchronization. Meanwhile, two simulation results about the second-order Kuramoto oscillators are given to show the effectiveness of results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号