首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper concentrates on proposing a novel finite-time tracking control algorithm for a kind of nonlinear systems with input quantization and unknown control directions. The nonlinear functions in the system are approximated by the means of strong approximation capability of the fuzzy logic systems. Firstly, the nonlinear system with unknown control directions is transformed into an equivalent system with known control gains by coordinate transformation. Secondly, the unknown system states are estimated by a designed fuzzy state observer, and the disturbance observer is constructed to track the external disturbances. The command filtering method is proposed to approach the problem of “explosion of complexity” existed in the conventional backstepping design process. In this system, the difficulties caused by unknown control directions are solved via the Nussbaum gain approach. Finally, based on the fuzzy state observer, the controller of the original system is obtained via using the transformed system by the backstepping method. The boundedness of all signals and the convergence of tracking and observer errors at the origin are ensured for the closed-loop system, and demonstrated by the simulation result in this paper.  相似文献   

2.
This paper studies the problem of finite-time formation tracking control for networked nonaffine nonlinear systems with unmeasured dynamics and unknown uncertainties/disturbances under directed topology. A unified distributed control framework is proposed by integrating adaptive backstepping control, dynamic gain control and dynamic surface control based on finite-time theory and consensus theory. Auxiliary dynamics are designed to construct control gains with non-Lipschitz dynamics so as to guarantee finite-time convergence of formation errors. Adaptive control is used to compensate for uncertain control efforts of the transformed systems derived from original nonaffine systems. It is shown that formation tracking is achieved during a finite-time period via the proposed controller, where fractional power terms are only associated with auxiliary dynamics instead of interacted information among the networked nonlinear systems in comparison with most existing finite-time cooperative controllers. Moreover, the continuity of the proposed controller is guaranteed by setting the exponents of fractional powers to an appropriate interval. It is also shown that the improved dynamic surface control method could guarantee finite-time convergence of formation errors, which could not be accomplished by conventional dynamic surface control. Finally, simulation results show the effectiveness of the proposed control scheme.  相似文献   

3.
A global decentralized low-complexity tracker design methodology is proposed for uncertain interconnected high-order nonlinear systems with unknown high powers. It is assumed that interconnected nonlinearities are bounded by completely unknown nonlinearities, rather than, a linear combination of high-ordered state variables. Compared with the existing decentralized results for interconnected nonlinear systems with known high powers, the decentralized robust controller, which achieves the pre-designable transient and steady-state tracking performance for each subsystem, is designed by employing nonlinear error surfaces with time-varying performance functions, regardless of unknown nonlinear interactions and high powers related to virtual and actual control variables. The proposed decentralized continuous robust low-complexity tracker is realized without the use of any adaptive or function approximation techniques for estimating unknown parameters and nonlinearities. The stability and preassigned tracking performance of the resulting decentralized low-complexity control system are thoroughly analyzed in the Lyapunov sense. Finally, simulation results on coupled underactuated mechanical systems are provided to show the effectiveness of the proposed theoretical result.  相似文献   

4.
A practical finite-time command filtered backstepping control method is proposed in this paper for a microwave plasma chemical vapor deposition (MPCVD) reactor system. The MPCVD reactor system is modeled as a coupled nonlinear system with unknown control direction functions and unknown nonlinearities. To address the unknown nonlinearities, novel practical finite-time command filters are proposed to construct the estimations of such nonlinearities. On the other hand, an equivalent augmented system of the reactor system is proposed to address the design challenges that posed by the system unknown control direction functions. Additionally, it can be concluded that the proposed control method ensures practical finite-time stability of the reactor system tracking errors by using the practical finite-time Lyapunov stability criterion. Finally, the effectiveness of the approach is demonstrated through the simulation results.  相似文献   

5.
This paper proposes an adaptive approximation design for the decentralized fault-tolerant control for a class of nonlinear large-scale systems with unknown multiple time-delayed interaction faults. The magnitude and occurrence time of the multiple faults are unknown. The function approximation technique using neural networks is employed to adaptively compensate for the unknown time-delayed nonlinear effects and changes in model dynamics due to the faults. A decentralized memoryless adaptive fault-tolerant (AFT) control system is designed with prescribed performance bounds. Therefore, the proposed controller guarantees the transient performance of tracking errors at the moments when unexpected changes of system dynamics occur. The weights for neural networks and the bounds of residual approximation errors are estimated by using adaptive laws derived from the Lyapunov stability theorem. It is also proved that all tracking errors are preserved within the prescribed performance bounds. A simulation example is provided to illustrate the effectiveness of the proposed AFT control scheme.  相似文献   

6.
This paper considers a class of nonlinear fractional-order multi-agent systems (FOMASs) with time-varying delay and unknown dynamics, and a new robust adaptive control technique is proposed for cooperative control. The unknown nonlinearities of the systems are online approximated by the introduced recurrent general type-2 fuzzy neural network (RGT2FNN). The unknown nonlinear functions are estimated, simultaneously with the control process. In other words, at each sample time the parameters of the proposed RGT2FNNs are updated and then the control signals are generated. In addition to the unknown dynamics, the orders of the fractional systems are also supposed to be unknown. The biogeography-based optimization algorithm (BBO) is extended to estimate the unknown parameters of RGT2FNN and fractional-orders. A LMI based compensator is introduced to guarantee the robustness of the proposed control system. The excellent performance and effectiveness of the suggested method is verified by several simulation examples and it is compared with the other methods. It is confirmed that the introduced cooperative controller results in a desirable performance in the presence of time-varying delay, unknown dynamics, and unknown fractional-orders.  相似文献   

7.
Decentralized adaptive neural backstepping control scheme is developed for uncertain high-order stochastic nonlinear systems with unknown interconnected nonlinearity and output constraints. For the control of high-order nonlinear interconnected systems, it is assumed that nonlinear system functions are unknown. It is for the first time to control stochastic nonlinear high-order systems with output constraints. Firstly, by constructing barrier Lyapunov functions, output constraints are handled. Secondly, at each recursive step, only one adaptive parameter is updated to overcome over-parameterization problems, and RBF neural networks are used to identify unknown nonlinear functions so that the difficulties caused by completely unknown system functions and stochastic disturbances are tackled. Finally, based on the Lyapunov stability method, the decentralized adaptive control scheme via neural networks approximator is proposed, ultimately reducing the number of learning parameters. It is shown that the designed controller can guarantee all the signals of the resulting closed-loop system to be semi-globally uniformly ultimately bounded (SGUUB), and the tracking errors for each subsystem are driven to a small neighborhood of zero. The simulation studies are performed to verify the effectiveness of the proposed control strategy.  相似文献   

8.
In the presence of uncertain time-varying control coefficients, structuring parameter uncertainty and unknown state time delay, this paper proposes a continuous feedback control scheme for highly nonlinear systems without extra nonlinear growth restriction. An expansion of the backstepping method is presented based on dynamic gains and tuning functions. By Lyapunov–Krasovskii functionals, a delay-free controller is designed to regulate the original system states to zero with the other states being globally bounded.  相似文献   

9.
In this paper, an adaptive neural control scheme is proposed for a class of unknown nonlinear systems with unknown sensor hysteresis. The radial basis function neural networks are employed to approximate the unknown nonlinearities and the backstepping technique is implemented to construct controllers. The difficulty of the control design lies in that the genuine states of the system are not available for feedback, which is caused by sensor hysteresis. The proposed control scheme eventually ensures the practical finite-time stability of the closed-loop system, which is proved by the Lyapunov theory. A numerical simulation example is included to verify the effectiveness of the developed approach.  相似文献   

10.
In this paper, we focus on an output secure consensus control issue for nonlinear multi-agent systems (MASs) under sensor and actuator attacks. Followers in an MAS are in strict-feedback form with unknown control directions and unknown dead-zone input, where both sensors and nonlinear characteristics of dead-zone in actuators are paralyzed by malicious attacks. To deal with sensor attacks, uncertain dynamics in individual follower are separated by a separation theorem, and estimation parameters are introduced for compensating and mitigating the influence from adversaries. The influence from actuator attacks are treated as a total displacement in a dead-zone nonlinearity, and an upper bound, as well as its estimation, is introduced for this displacement. The dead-zone nonlinearity, sensor attacks and unknown control gains are gathered together regarded as composite unknown control directions, and Nussbaum functions are utilized to address the issue of unknown control directions. A distributed secure consensus control strategy is thus developed recursively for each follower in the framework of surface control method. Theoretically, the stability of the closed-loop MAS is analyzed, and it is proved that the MAS achieves output consensus in spite of nonlinear dynamics and malicious attacks. Finally, theoretical results are verified via a numerical example and a group of electromechanical systems.  相似文献   

11.
This paper studies the problem of observer based fast nonsingular terminal sliding mode control schemes for nonlinear non-affine systems with actuator faults, unknown states, and external disturbances. A hyperbolic tangent function based extended state observer is considered to estimate unknown states, which enhances robustness by estimating external disturbance. Then, Taylor series expansion is employed for the non-affine nonlinear system with actuator faults, which transforms it to an affine form system to simplify disturbance observer and controller design. A finite time disturbance observer is designed to address unknown compound disturbances, which includes external disturbances and system uncertainties. A fast nonsingular terminal sliding mode with exponential function sliding mode is proposed to address output tracking. Simulation results show the proposed scheme is effective.  相似文献   

12.
It is well known that control of Markovian systems is a difficult problem. This paper considers synchronization control of Markovian coupled nonlinear systems with random delays. A new control scheme is proposed. Sufficient conditions in terms of linear matrix inequalities (LMIs) are obtained such that the coupled system can be asymptotically synchronized onto an isolated system. The synchronization criteria include classical mode-dependent and mode-independent results as special cases. The design method of the control gains is also given. Compared with mode-dependent and mode-independent control methods, our results are more practical and have lower conservatism, respectively. Numerical simulations are given to verify the effectiveness of the theoretical results.  相似文献   

13.
This paper is concerned with event-triggered adaptive fuzzy tracking control for high-order stochastic nonlinear systems. The approach of fuzzy logic systems (FLSs) approximation is extended to high-order stochastic nonlinear systems to deal with the unknown nonlinear uncertainties. A novel high-order adaptive fuzzy tracking controller is firstly presented via a backstepping approach and event-triggering mechanism which can mitigate the unnecessary waste of computation and communication resources. Based on the above techniques, frequently-used growth assumptions imposed on unknown system nonlinearities are removed and the influence for the high order is handled. The proposed high-order adaptive fuzzy tracking control method not only deals with the influence of high order, but also ensures that the tracking error converges to a small neighborhood of the origin in probability. Finally, the effectiveness of the proposed control method is illustrated by a numerical example.  相似文献   

14.
This paper focuses on the leaderless and leader-following consensus problems of second-order nonlinear multi-agents under directed graphs. Both leaderless and leader-following consensus protocols are proposed for multi-agents with unknown control directions based on the Nussbaum-type gains. For the leaderless case, the proposed protocol can guarantee that the consensus errors asymptotically converge to zero. Moreover, for the leader-following case, the Lyapunov stability analysis shows that the consensus tracking errors can be made arbitrarily small by tuning the control parameters. It should also be noted that these proposed protocols do not require any information about the global communication topology and work with only the relative information of neighboring agents. Illustrative examples are given to show the effectiveness of the proposed control protocols.  相似文献   

15.
This paper proposes a probabilistic fuzzy proportional - integral (PFPI) controller for controlling uncertain nonlinear systems. Firstly, the probabilistic fuzzy logic system (PFLS) improves the capability of the ordinary fuzzy logic system (FLS) to overcome various uncertainties in the controlled dynamical systems by integrating the probability method into the fuzzy logic system. Moreover, the input/output relationship for the proposed PFPI controller is derived. The resulting structure is equivalent to nonlinear PI controller and the equivalent gains for the proposed PFPI controller are a nonlinear function of input variables. These gains are changed as the input variables changed. The sufficient conditions for the proposed PFPI controller, which achieve the bounded-input bounded-output (BIBO) stability are obtained based on the small gain theorem. Finally, the obtained results indicate that the PFPI controller is able to reduce the effect of the system uncertainties compared with the fuzzy PI (FPI) controller.  相似文献   

16.
This paper investigates the adaptive fuzzy output feedback fault-tolerant tracking control problem for a class of switched uncertain nonlinear systems with unknown sensor faults. In this paper, since the sensor may suffer from an unknown constant loss scaling failure, only actual output can be used for feedback design. A failure factor is employed to represent the loss of effectiveness faults. Then, an adaptive estimation coefficient is introduced to estimate the failure factor, and a state observer based on the actual output is constructed to estimate the system states. Fuzzy logic systems are used to approximate the unknown nonlinear functions. Based on the Lyapunov function method and the backstepping technique, the proposed control scheme with average dwell time constraints can guarantee that all states of the closed-loop system are bounded and the tracking error can converge to a small neighborhood of zero. Finally, two simulation examples are given to illustrate the effectiveness of the proposed scheme.  相似文献   

17.
This paper deals with the state estimation of nonlinear discrete systems described by a multiple model with unknown inputs. The main goal concerns the simultaneous estimation of the system's state and the unknown inputs. This goal is achieved through the design of a multiple observer based on the elimination of the unknown inputs. It is shown that the observer gains are solutions of a set of linear matrix inequalities. After that, an unknown input estimation method is proposed. An academic example and an application dealing with message decoding illustrate the effectiveness of the proposed multiple observer.  相似文献   

18.
The main idea of the original parallel distributed compensation (PDC) method is to partition the dynamics of a nonlinear system into a number of linear subsystems, design a number of state feedback gains for each linear subsystem, and finally generate the overall state feedback gain by fuzzy blending of such gains. A new modification to the original PDC method is proposed here, so that, besides the stability issue, the closed-loop performance of the system can be considered at the design stage. For this purpose, the state feedback gains are not considered constant through the linearized subsystems, rather, based on some prescribed performance criteria, several feedback gains are associated to every subsystem, and the final gain for every subsystem is obtained by fuzzy blending of such gains. The advantage is that, for example, a faster response can be obtained, for a given bound on the control input. Asymptotic stability of the closed loop system is also guaranteed by using the Lyapunov method. To illustrate the effectiveness of the new method, control of a flexible joint robot (FJR) is investigated and superiority of the designed controller over other existing methods is demonstrated.  相似文献   

19.
This paper presents a novel approach to address the decentralized fault tolerant model predictive control of discrete-time interconnected nonlinear systems. The overall system is composed of a number of discrete-time interconnected nonlinear subsystems at the presence of multiple faults occurring at unknown time-instants. In order to deal with the unknown interconnection effects and changes in model dynamics due to multiple faults, both passive and active fault tolerant control design are considered. In the Active fault tolerant case an online approximation algorithm is applied to estimate the unknown interconnection effects and changes in model dynamics due to multiple faults. Besides, the decentralized control strategy is implemented for each subsystem with the model predictive control algorithm subject to some constraints. It is showed that the proposed method guarantees input-to-state stability characterization for both local subsystems and the global system under some predetermined assumptions. The simulation results are exploited to illustrate the applicability of the proposed method.  相似文献   

20.
In this paper, the leader-following consensus problem is investigated by event-triggered control for multi-agent systems subject to time-varying actuator faults. Firstly, for a case of the leader without control input, a distributed event-triggered fault-tolerant protocol is proposed with the help of adaptive gains. Secondly, the proposed protocol is developed by an auxiliary nonlinear function to compensate the effect of the leader’s unknown bounded input. It is shown that under the both obtained protocols the tracking errors converge to an adjustable neighborhood around the origin, meanwhile the Zeno behavior is avoided. Moreover, the protocols are fully distributed in sense that any global information associated with the network is no longer utilized. Finally, numerical examples are presented to show the validity of the obtained protocols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号