首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this study was to assess the effects of cold-water immersion (cryotherapy) on indices of muscle damage following a bout of prolonged intermittent exercise. Twenty males (mean age 22.3 years, s = 3.3; height 1.80 m, s = 0.05; body mass 83.7 kg, s = 11.9) completed a 90-min intermittent shuttle run previously shown to result in marked muscle damage and soreness. After exercise, participants were randomly assigned to either 10 min cold-water immersion (mean 10 degrees C, s = 0.5) or a non-immersion control group. Ratings of perceived soreness, changes in muscular function and efflux of intracellular proteins were monitored before exercise, during treatment, and at regular intervals up to 7 days post-exercise. Exercise resulted in severe muscle soreness, temporary muscular dysfunction, and elevated serum markers of muscle damage, all peaking within 48 h after exercise. Cryotherapy administered immediately after exercise reduced muscle soreness at 1, 24, and 48 h (P < 0.05). Decrements in isometric maximal voluntary contraction of the knee flexors were reduced after cryotherapy treatment at 24 (mean 12%, s(x) = 4) and 48 h (mean 3%, s(x) = 3) compared with the control group (mean 21%, s(x) = 5 and mean 14%, s(x) = 5 respectively; P < 0.05). Exercise-induced increases in serum myoglobin concentration and creatine kinase activity peaked at 1 and 24 h, respectively (P < 0.05). Cryotherapy had no effect on the creatine kinase response, but reduced myoglobin 1 h after exercise (P < 0.05). The results suggest that cold-water immersion immediately after prolonged intermittent shuttle running reduces some indices of exercise-induced muscle damage.  相似文献   

2.
Abstract

The aim of this study was to assess the effects of cold-water immersion (cryotherapy) on indices of muscle damage following a bout of prolonged intermittent exercise. Twenty males (mean age 22.3 years, s = 3.3; height 1.80 m, s = 0.05; body mass 83.7 kg, s = 11.9) completed a 90-min intermittent shuttle run previously shown to result in marked muscle damage and soreness. After exercise, participants were randomly assigned to either 10 min cold-water immersion (mean 10°C, s = 0.5) or a non-immersion control group. Ratings of perceived soreness, changes in muscular function and efflux of intracellular proteins were monitored before exercise, during treatment, and at regular intervals up to 7 days post-exercise. Exercise resulted in severe muscle soreness, temporary muscular dysfunction, and elevated serum markers of muscle damage, all peaking within 48 h after exercise. Cryotherapy administered immediately after exercise reduced muscle soreness at 1, 24, and 48 h (P < 0.05). Decrements in isometric maximal voluntary contraction of the knee flexors were reduced after cryotherapy treatment at 24 (mean 12%, s x  = 4) and 48 h (mean 3%, s x  = 3) compared with the control group (mean 21%, s x  = 5 and mean 14%, s x  = 5 respectively; P < 0.05). Exercise-induced increases in serum myoglobin concentration and creatine kinase activity peaked at 1 and 24 h, respectively (P < 0.05). Cryotherapy had no effect on the creatine kinase response, but reduced myoglobin 1 h after exercise (P < 0.05). The results suggest that cold-water immersion immediately after prolonged intermittent shuttle running reduces some indices of exercise-induced muscle damage.  相似文献   

3.
Abstract

Aim: To investigate the effect of different water immersion (WI) treatments on recovery from intermittent shuttle running exercise in comparison to an ecologically relevant control.

Methods: Forty males performed 90 minutes intermittent shuttle running, following which they were assigned to either: (1) 12-min standing WI at 12°C; (2) 12-min standing WI at 35°C; (3) 2-min seated WI at 12°C; (4) an ecologically relevant control consisting of 12 minutes walking at 5 km h?1. Muscle soreness, maximal voluntary contraction (MVC) of the knee flexors and extensors, hop distance, creatine kinase activity and myoglobin concentration were measured before exercise and in the 168 hours following the intervention. Between-group differences, time effects and interaction effects were investigated by mixed-model ANOVA.

Results: The shuttle running exercise induced an increase in muscle soreness (1, 24, 48 and 72 hours post-intervention) creatine kinase activity and myoglobin concentration (post-exercise and 1, 24 and 48 hours post-intervention), and reduced MVC of the knee extensors (11% reduction at 24 hours, remaining reduced at 48 and 72 hours), flexors (24% reduction at 24 hours, remaining reduced at 24, 48, 72 and 168 hours), and hop distance (24 and 48 hours). However, no between-group differences or interaction effects were evident for any of these parameters.

Conclusion: The WI protocols investigated were not better than light exercise in facilitating recovery from shuttle running exercise. Future studies examining the efficacy of WI as a recovery intervention should include a representative control condition to increase their relevance to sporting populations.  相似文献   

4.
The aim of this study was to examine the effect of wearing graduated compression stockings on physiological and perceptual variables during and after intermittent (Experiment 1) and continuous (Experiment 2) running exercise. Fourteen recreational runners performed two multi-stage intermittent shuttle running tests with 1 h recovery between tests (Experiment 1). A further 14 participants performed a fast-paced continuous 10-km road run (Experiment 2). Participants wore commercially available knee-length graduated compression stockings (pressure at ankle 18 - 22 mmHg) beneath ankle-length sports socks (experimental trials) or just the latter (control trials) in a randomized counterbalanced design (for both experiments). No performance or physiological differences were observed between conditions during intermittent shuttle running. During the 10-km trials, there was a reduction in delayed-onset muscle soreness 24 h after exercise when wearing graduated compression stockings (P < 0.05). There was a marked difference in the frequency and location of soreness: two participants in the stockings trial but 13 participants in the control trial indicated soreness in the lower legs. Wearing graduated compression stockings during a 10-km road run appears to reduce delayed-onset muscle soreness after exercise in recreationally active men.  相似文献   

5.
The purpose of this study was to evaluate changes in muscle soreness and serum enzyme activity following consecutive drop jumps. Seven male subjects (mean age 30.6 years) performed drop jumps from a 80-cm box height every 7 s until exhaustion (mean = 114 drop jumps). A questionnaire was used to assess muscle soreness (0 = no pain, 7 = unbearable painful) both pre- and post-exercise (0, 12, 24, 36 and 48 h, and 3, 4 and 5 days after the exercise). Blood samples were also taken from three subjects at each of these times. For the other four subjects, blood samples were taken pre-exercise and 0, 12 and 36 h and 5 days post-exercise only. Although there was large inter-subject variability in the development of muscle soreness, all the subjects reported muscle soreness in their lower extremity muscles, especially in the quadriceps femoris. Muscle soreness developed significantly (P less than 0.01) over time, its peak (mean +/- S.E. = 3.7 +/- 0.7) occurring 12-48 h post-exercise. Serum enzyme activity changed significantly over time (P less than 0.05), but the changes were small. Not one subject showed a large increase in creatine kinase, and the average increase was less than 1.3 times as much as the pre-exercise level throughout the period of study. These results suggest that the muscle damage that occurs after drop jumping is not associated with a large release of muscle enzymes into the blood, and muscle soreness is not necessarily related to enzyme elevation following drop jumps.  相似文献   

6.
Abstract

The aim of this study was to examine the effect of wearing graduated compression stockings on physiological and perceptual variables during and after intermittent (Experiment 1) and continuous (Experiment 2) running exercise. Fourteen recreational runners performed two multi-stage intermittent shuttle running tests with 1 h recovery between tests (Experiment 1). A further 14 participants performed a fast-paced continuous 10-km road run (Experiment 2). Participants wore commercially available knee-length graduated compression stockings (pressure at ankle 18 – 22 mmHg) beneath ankle-length sports socks (experimental trials) or just the latter (control trials) in a randomized counterbalanced design (for both experiments). No performance or physiological differences were observed between conditions during intermittent shuttle running. During the 10-km trials, there was a reduction in delayed-onset muscle soreness 24 h after exercise when wearing graduated compression stockings (P < 0.05). There was a marked difference in the frequency and location of soreness: two participants in the stockings trial but 13 participants in the control trial indicated soreness in the lower legs. Wearing graduated compression stockings during a 10-km road run appears to reduce delayed-onset muscle soreness after exercise in recreationally active men.  相似文献   

7.
Abstract

Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (P<0.05) increases in muscle soreness and creatine kinase (CK) and decreases in peak knee extensor torque at 24 and 48 h after squatting exercise. Moreover, RMR, physiological, metabolic and perceptual responses during sub-maximal running and EPOC were increased in the two days after squatting exercise (P<0.05). It is suggested that the elevated RMR was a consequence of a raised energy requirement for the degradation and resynthesis of damaged muscle fibres. The increased oxygen demand during sub-maximal running after muscle damage was responsible for the increase in EPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow.  相似文献   

8.
Delayed-onset muscle soreness refers to the skeletal muscle pain that is experienced following eccentric exercise. The aim of the present study was to examine the physiological effects of physical activity with or without ibuprofen on delayed onset muscle soreness. Forty-four non-athletic male volunteers (age 24.3 +/- 2.4 years) were randomly assigned to one of four groups: physical activity (n = 11), ibuprofen (n = 11), physical activity and ibuprofen (combination, n = 11), or control (n = 11). The physical activity programme comprised 5 min of walking and jogging, 10 min of static stretching of the hands and shoulder girdle, and 5 min of concentric movements with sub-maximal contractions. The total amount of ibuprofen consumed by a single individual was 2800 mg; this was taken from 1 h before the eccentric actions up to 48 h after it. Delayed onset muscle soreness was induced by performing 70 eccentric contractions of the biceps muscle of the non-dominant side on a modified arm curl machine. Perceived muscle soreness, maximal eccentric contraction, creatine kinase enzyme activity and elbow range of motion were assessed 1 h before and 1, 24 and 48 h after the eccentric actions. The results indicated that, after the eccentric actions, soreness increased (P < 0.001) across time in all groups, with the highest values being recorded at 24 h. At 24 and 48 h, greater soreness (P < 0.001) was observed in the control group than in the physical activity and combination groups. After the eccentric actions, creatine kinase increased and was elevated (P < 0.001) compared with baseline in all groups, with values returning to baseline in the physical activity and combination groups by 48 h. However, creatine kinase in the control and ibuprofen groups was still significantly higher than at baseline after 48 h. Creatine kinase was higher (P < 0.001) in the control group than in physical activity and combination groups at 24 and 48 h. There was also a reduction (P < 0.001) in elbow range of motion across time. This reduction in elbow range of motion was greater (P < 0.001) in the control and ibuprofen groups than in the physical activity and combination groups at 1, 24 and 48 h. The reduction in maximum eccentric contraction was greater (P < 0.001) in the control and ibuprofen groups than in the physical activity group at 24 and 48 h and the combination group at 48 h. In conclusion, the results add to our understanding of the effects of physical activity and the combination of physical activity and ibuprofen in reducing the severity of muscle soreness induced by eccentric exercise. Physical activity conducted before eccentric exercise alleviates muscle soreness. Our results indicate that physical activity with or without ibuprofen helps to prevent delayed-onset muscle soreness.  相似文献   

9.
In this study, we investigated the effect of ingesting carbohydrate alone or carbohydrate with protein on functional and metabolic markers of recovery from a rugby union-specific shuttle running protocol. On three occasions, at least one week apart in a counterbalanced order, nine experienced male rugby union forwards ingested placebo, carbohydrate (1.2 g · kg body mass(-1) · h(-1)) or carbohydrate with protein (0.4 g · kg body mass(-1) · h(-1)) before, during, and after a rugby union-specific protocol. Markers of muscle damage (creatine kinase: before, 258 ± 171 U · L(-1) vs. 24 h after, 574 ± 285 U · L(-1); myoglobin: pre, 50 ± 18 vs. immediately after, 210 ± 84 nmol · L(-1); P < 0.05) and muscle soreness (1, 2, and 3 [maximum soreness = 8] for before, immediately after, and 24 h after exercise, respectively) increased. Leg strength and repeated 6-s cycle sprint mean power were slightly reduced after exercise (93% and 95% of pre-exercise values, respectively; P < 0.05), but were almost fully recovered after 24 h (97% and 99% of pre-exercise values, respectively). There were no differences between trials for any measure. These results indicate that in experienced rugby players, the small degree of muscle damage and reduction in function induced by the exercise protocol were not attenuated by the ingestion of carbohydrate and protein.  相似文献   

10.
Abstract

This study investigated the effects of knee localised muscle damage on running kinematics at varying speeds. Nineteen young women (23.2 ± 2.8 years; 164 ± 8 cm; 53.6 ± 5.4 kg), performed a maximal eccentric muscle damage protocol (5 × 15) of the knee extensors and flexors of both legs at 60 rad · s-1. Lower body kinematics was assessed during level running on a treadmill at three speeds pre- and 48 h after. Evaluated muscle damage indices included isometric torque, muscle soreness and serum creatine kinase activity. The results revealed that all indices changed significantly after exercise, indicating muscle injury. Step length decreased and stride frequency significantly increased 48 h post-exercise only at the fastest running speed (3 m · s-1). Support time and knee flexion at toe-off increased only at the preferred transition speed and 2.5 m · s-1. Knee flexion at foot contact, pelvic tilt and obliquity significantly increased, whereas hip extension during stance-phase, knee flexion during swing-phase, as well as knee and ankle joints range of motion significantly decreased 48 h post-exercise at all speeds. In conclusion, the effects of eccentric exercise of both knee extensors and flexors on particular tempo-spatial parameters and knee kinematics of running are speed-dependent. However, several pelvic and lower joint kinematics present similar behaviour at the three running speeds examined. These findings provide new insights into how running kinematics at different speeds are adapted to compensate for the impaired function of the knee musculature following muscle damage.  相似文献   

11.
Abstract

The purpose of this study was to determine the recovery rate of football skill performance following resistance exercise of moderate or high intensity. Ten elite football players participated in three different trials: control, low-intensity resistance exercise (4 sets, 8–10 repetitions/set, 65–70% 1 repetition maximum [1RM]) and high-intensity resistance exercise (4 sets, 4–6 repetitions/set, 85–90% 1RM) in a counterbalanced manner. In each experimental condition, participants were evaluated pre, post, and at 24, 48, 72 h post exercise time points. Football skill performance was assessed through the Loughborough Soccer Passing Test, long passing, dribbling, shooting and heading. Delayed onset muscle soreness, knee joint range of motion, and muscle strength (1RM) in squat were considered as muscle damage markers. Blood samples analysed for creatine kinase activity, C-reactive protein, and leukocyte count. Passing and shooting performance declined (P < 0.05) post-exercise following resistance exercise. Strength declined post-exercise following high-intensity resistance exercise. Both trials induced only a mild muscle damage and inflammatory response in an intensity-dependent manner. These results indicate that football skill performance is minimally affected by acute resistance exercise independent of intensity suggesting that elite players may be able to participate in a football practice or match after only 24 h following a strength training session.  相似文献   

12.
Strenuous physical exercise of the limb muscles commonly results in damage, especially when that exercise is intense, prolonged and includes eccentric contractions. Many factors contribute to exercise-induced muscle injury and the mechanism is likely to differ with the type of exercise. Competitive sports players are highly susceptible to this type of injury. AM3 is an orally administered immunomodulator that reduces the synthesis of proinflammatory cytokines and normalizes defective cellular immune fractions. The ability of AM3 to prevent chronic muscle injury following strenuous exercise characterized by eccentric muscle contraction was evaluated in a double-blind and randomized pilot study. Fourteen professional male volleyball players from the First Division of the Spanish Volleyball League volunteered to take part. The participants were randomized to receive either placebo (n=7) or AM3 (n=7). The physical characteristics (mean+/-s) of the placebo group were as follows: age 25.7+/-2.1 years, body mass 87.2+/-4.1 kg, height 1.89+/-0.07 m, maximal oxygen uptake 65.3+/-4.2 ml.kg(-1).min(-1). Those of the AM3 group were as follows: age 26.1+/-1.9 years, body mass 85.8+/-6.1 kg, height 1.91+/-0.07 m, maximal oxygen uptake 64.6+/-4.5 ml.kg(-1).min(-1). All participants were evaluated for biochemical indices of muscle damage, including concentrations of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatine kinase (CK) and its MB fraction (CK-MB), myoglobin, lactate dehydrogenase, urea, creatinine and gamma-glutamyltranspeptidase, both before and 30 days after treatment (over the peak of the competitive season). In the placebo group, competitive exercise (i.e. volleyball) was accompanied by significant increases in creatine kinase (494+/-51 to 560+/-53 IU.l(-1), P < 0.05) and myoglobin (76.8+/-2.9 to 83.9+/-3.1 microg.l(-1), P < 0.05); aspartate aminotransferase (30.8+/-3.0 to 31.1+/-2.9 IU.l(-1)) and lactate dehydrogenase (380+/-31 to 376+/-29 IU.l(-1)) were relatively unchanged after the 30 days maximum effort. AM3 not only inhibited these changes, it led to a decrease from baseline serum concentrations of creatine kinase (503+/-49 to 316+/-37 IU.l(-1), P < 0.05) and myoglobin (80.1+/-3.2 to 44.1+/-2.6 IU.l(-1), P < 0.05), as well as aspartate aminotransferase (31.1+/-3.3 to 26.1+/-2.7 IU.l(-1), P < 0.05) and lactate dehydrogenase (368+/-34 to 310+/-3 IU.l(-1), P < 0.05). The concentration of CK-MB was also significantly decreased from baseline with AM3 treatment (11.6+/-1.2 to 5.0+/-0.7 IU.l(-1), P < 0.05), but not with placebo (11.4+/-1.1 to 10.8+/-1.4 IU.l(-1)). In conclusion, the use of immunomodulators, such as AM3, by elite sportspersons during competition significantly reduces serum concentrations of proteins associated with muscle damage.  相似文献   

13.
The aim of the present study was to examine how the recovery of physiological functioning of the leg muscles after high-intensity eccentric exercise such as downhill running could be promoted by aqua exercise for a period until the damaged muscle had recovered almost completely. Ten male long-distance runners were divided equally into an aqua exercise group and a control group. From the first day (Day 0) to the fourth day (Day 3), the participants completed a questionnaire on muscle soreness, and serum creatine kinase activity, muscle power, flexibility, whole-body reaction time and muscle stiffness were measured. After measurements on Day 0, the participants performed downhill running (three 5 min runs with a 5 min rest interval at -10%, 335.7 +/- 6.1 m . min-1). The aqua exercise group performed walking, jogging and jumping in water on three successive days following the downhill running on Day 0 for 30 min each day. Muscle power was reduced on Day 1 in the control group (P < 0.05). Muscle soreness in the calf on Day 3 was greater in the control group than that in the aqua exercise group (P < 0.05). In the aqua exercise group, muscle stiffness in the calf was less than that in the control group over 4 days (time main effect: P < 0.05; group x time interaction: P < 0.05). We conclude that aqua exercise promoted physiological functioning of the muscles in the legs after high-intensity downhill running for a period until the damaged muscles had recovered almost completely.  相似文献   

14.
Delayed-onset muscle soreness refers to the skeletal muscle pain that is experienced following eccentric exercise. The aim of the present study was to examine the physiological effects of physical activity with or without ibuprofen on delayed onset muscle soreness. Forty-four non-athletic male volunteers (age 24.3?±?2.4 years) were randomly assigned to one of four groups: physical activity (n = 11), ibuprofen (n = 11), physical activity and ibuprofen (combination, n = 11), or control (n = 11). The physical activity programme comprised 5?min of walking and jogging, 10?min of static stretching of the hands and shoulder girdle, and 5?min of concentric movements with sub-maximal contractions. The total amount of ibuprofen consumed by a single individual was 2800?mg; this was taken from 1?h before the eccentric actions up to 48?h after it. Delayed onset muscle soreness was induced by performing 70 eccentric contractions of the biceps muscle of the non-dominant side on a modified arm curl machine. Perceived muscle soreness, maximal eccentric contraction, creatine kinase enzyme activity and elbow range of motion were assessed 1?h before and 1, 24 and 48?h after the eccentric actions. The results indicated that, after the eccentric actions, soreness increased (P?<?0.001) across time in all groups, with the highest values being recorded at 24?h. At 24 and 48?h, greater soreness (P <?0.001) was observed in the control group than in the physical activity and combination groups. After the eccentric actions, creatine kinase increased and was elevated (P?<?0.001) compared with baseline in all groups, with values returning to baseline in the physical activity and combination groups by 48?h. However, creatine kinase in the control and ibuprofen groups was still significantly higher than at baseline after 48?h. Creatine kinase was higher (P?<?0.001) in the control group than in physical activity and combination groups at 24 and 48?h. There was also a reduction (P?<?0.001) in elbow range of motion across time. This reduction in elbow range of motion was greater (P?<?0.001) in the control and ibuprofen groups than in the physical activity and combination groups at 1, 24 and 48?h. The reduction in maximum eccentric contraction was greater (P?<?0.001) in the control and ibuprofen groups than in the physical activity group at 24 and 48?h and the combination group at 48?h. In conclusion, the results add to our understanding of the effects of physical activity and the combination of physical activity and ibuprofen in reducing the severity of muscle soreness induced by eccentric exercise. Physical activity conducted before eccentric exercise alleviates muscle soreness. Our results indicate that physical activity with or without ibuprofen helps to prevent delayed-onset muscle soreness.  相似文献   

15.
The aim of this study was to examine the effects of a prophylactic dose of a local, transcutaneously administered, non-steroidal anti-inflammatory drug on muscle soreness, muscle damage and sprinting performance in young trained males. Twenty-five subjects aged 19+/-3 years, actively participating in rugby union and field hockey, were familiarized with the test procedure and then divided at random into an experimental group (n = 13) and a control group (n = 12). The experimental group received two patches, each containing 40 mg flurbiprofen (TransAct LAT), 12 h before an exercise bout designed to produce delayed-onset soreness (DOMS). The control group received identical non-medicated placebo patches at the same time. Delayed-onset muscle soreness was induced by an exercise protocol consisting of drop jumps (seven sets of 10 repetitions). Serum creatine kinase activity, muscle soreness, muscle girth and acceleration in a maximal sprint over 30 m were measured before the induction of DOMS and at 12, 24, 48 and 72 h thereafter. Plasma lactate concentration was measured 3 min after the 30-m sprint tests. Subjects in both groups had significantly more pain at 24 and 48 h compared with at 12 and 72 h (P < 0.05; Friedman two-way analysis of variance). Thigh girth and serum creatine kinase did not change throughout the experiment. Although plasma lactate concentrations were elevated after the 30-m sprint, there were no differences between groups or as a result of DOMS. The greatest acceleration occurred between 5 and 10 m. This was not affected by the anti-inflammatory drug or DOMS. In conclusion, the aetiology of the DOMS induced in the trained subjects in this study seems to be independent of inflammatory processes or, more specifically, of increases in prostaglandin synthesis in the muscles.  相似文献   

16.
Cryotherapy is an effective treatment for acute sports injury to soft tissue, although the effect of cryotherapy on exercise-induced muscle damage is unclear. The aim of this study was to assess the effects of cold water immersion on the symptoms of exercise-induced muscle damage following strenuous eccentric exercise. After performing a bout of damage-inducing eccentric exercise (eight sets of five maximal reciprocal contractions at 0.58 rad x s(-1)) of the elbow flexors on an isokinetic dynamometer, 15 females aged 22.0+/-2.0 years (mean +/- s) were allocated to a control group (no treatment, n = 7) or a cryotherapy group (n = 8). Subjects in the cryotherapy group immersed their exercised arm in cold water (15 degrees C) for 15 min immediately after eccentric exercise and then every 12 h for 15 min for a total of seven sessions. Muscle tenderness, plasma creatine kinase activity, relaxed elbow angle, isometric strength and swelling (upper arm circumference) were measured immediately before and for 3 days after eccentric exercise. Analysis of variance revealed significant (P < 0.05) main effects for time for all variables, with increases in muscle tenderness, creatine kinase activity and upper arm circumference, and decreases in isometric strength and relaxed elbow angle. There were significant interactions (P<0.05) of group x time for relaxed elbow angle and creatine kinase activity. Relaxed elbow angle was greater and creatine kinase activity lower for the cryotherapy group than the controls on days 2 and 3 following the eccentric exercise. We conclude that although cold water immersion may reduce muscle stiffness and the amount of post-exercise damage after strenuous eccentric activity, there appears to be no effect on the perception of tenderness and strength loss, which is characteristic after this form of activity.  相似文献   

17.
The aim of this study was to examine the relationship between myosin heavy chain (MHC) release as a specific marker of slow-twitch muscle fibre breakdown and magnetic resonance imaging (MRI) of skeletal muscle injury after eccentric exercise. The effects of a single series of 70 high-intensity eccentric contractions of the quadriceps femoris muscle group (single leg) on plasma concentrations of creatine kinase and MHC fragments were assessed in 10 young male sport education trainees before and 1 and 4 days after exercise. To visualize muscle injury, MRI of the loaded thigh was performed before and 4 days after the eccentric exercise. All participants recorded an increase (P < 0.05) in creatine kinase after exercise. In five participants, T2 signal intensity was unchanged post-exercise compared with pre-exercise and MHC plasma concentration was normal; however, they showed an increase (P < 0.05) in creatine kinase after exercise. For the remaining five participants, there was an increase in T2 signal intensity of the loaded vastus intermedius and vastus lateralis. These changes in MRI were accompanied by an increase in MHC plasma concentration (P< 0.01) as well as an increase in creatine kinase (P < 0.01). We suggest that changes in MRI T, signal intensity after muscle damage induced by eccentric exercise are closely related to damage to structurally bound contractile filaments of some muscle fibres. Additionally, MHC plasma release indicates that this damage affects not only fast-twitch fibres but also some slow-twitch fibres.  相似文献   

18.
There is a growing interest in exploring irisin response to acute exercise; however, the associations of acute exercise-induced irisin release with training status and exercise mode are not fully understood. This study was primarily designed to evaluate these associations. Sixteen healthy adults (8 trained versus 8 untrained) underwent a bout of cycling at 80% of maximal oxygen uptake (VO2max) for 50?min, with blood drawn pre-, 10-, and 180-min post-exercise. Another 17 healthy adults performed 2 bouts of graded exercise (cycling and running) until exhaustion on separate days using a randomized cross-over design, with blood taken pre-, 0-, 10-, and 60-min post-exercise. Circulating irisin, creatine kinase (CK), aspartate aminotransferase (AST), and myoglobin (Mb) were measured, and their respective areas under the curves (AUCs) were calculated. Irisin increased 10-min after 50?min of cycling at 80% of VO2max, while its changes from baseline to post-exercise and the amount of exercise-induced irisin release (presented as AUC) were comparable between trained and untrained adults (all P?>?.05). Irisin remained elevated 10-min post-exhausting running but decreased towards baseline 10-min post-exhausting cycling. Exhausting running induced an increase in irisin release for the whole course of exercise and recovery periods, but cycling did not. Acute exercise-induced irisin changes seemed not related to changes of CK, aspartate AST, and Mb in general. In conclusion, acute exercise-induced irisin release is not associated with training status but might be affected by training mode. Future studies are required to investigate which exercise mode might be most efficient in altering irisin.  相似文献   

19.
The aim of this study was to examine the relationship between myosin heavy chain (MHC) release as a specific marker of slow-twitch muscle fibre breakdown and magnetic resonance imaging (MRI) of skeletal muscle injury after eccentric exercise. The effects of a single series of 70 high-intensity eccentric contractions of the quadriceps femoris muscle group (single leg) on plasma concentrations of creatine kinase and MHC fragments were assessed in 10 young male sport education trainees before and 1 and 4 days after exercise. To visualize muscle injury, MRI of the loaded thigh was performed before and 4 days after the eccentric exercise. All participants recorded an increase ( P ? 0.05) in creatine kinase after exercise. In five participants, T2 signal intensity was unchanged post-exercise compared with pre-exercise and MHC plasma concentration was normal; however, they showed an increase ( P ? 0.05) in creatine kinase after exercise. For the remaining five participants, there was an increase in T2 signal intensity of the loaded vastus intermedius and vastus lateralis. These changes in MRI were accompanied by an increase in MHC plasma concentration ( P ? 0.01) as well as an increase in creatine kinase ( P ? 0.01). We suggest that changes in MRI T2 signal intensity after muscle damage induced by eccentric exercise are closely related to damage to structurally bound contractile filaments of some muscle fibres. Additionally, MHC plasma release indicates that this damage affects not only fast-twitch fibres but also some slow-twitch fibres.  相似文献   

20.
It has previously been shown that females incur less muscle damage than males after strenuous exercise, but limited data are available for humans. To determine possible differences between the sexes in humans, the response to high-force eccentric exercise was examined in a large sample of women (n = 83) and men (n = 82). The participants performed a bout of eccentric exercise of the elbow flexors consisting of 70 maximal repetitions. Isometric strength, resting elbow angle and muscle soreness were measured before, immediately after (except soreness) and then daily for 7 days after exercise. There was a significant loss in strength among both groups (69% for women and 63% for men) (P < 0.01) immediately after exercise; at 168 h post-exercise, women still had a 27% strength loss and men had a 24% strength loss. No significant difference in strength loss or recovery rate was found between men and women. Soreness reached peak values 32-48 h post-exercise (P < 0.01), with no significant difference between men and women. Range of motion decreased significantly until 3 days after exercise (14.6 degrees or 0.255 rad loss for women; 12.2 degrees or 0.213 rad loss for men) (P < 0.01); at 168 h post-exercise, the women and men still showed a loss of 4.8 degrees (0.084 rad) and 4.0 degrees (0.07 rad), respectively. There was a significant interaction of sex x time (P < 0.01); a post-hoc test indicated that the women experienced a greater loss in range of motion at 72 h than men and this difference was maintained to 168 h post-exercise (P < 0.01). Thus, our results do not support the contention that women have a lower response to eccentric exercise than men.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号