首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The aim of this study was to examine the relationship between myosin heavy chain (MHC) release as a specific marker of slow-twitch muscle fibre breakdown and magnetic resonance imaging (MRI) of skeletal muscle injury after eccentric exercise. The effects of a single series of 70 high-intensity eccentric contractions of the quadriceps femoris muscle group (single leg) on plasma concentrations of creatine kinase and MHC fragments were assessed in 10 young male sport education trainees before and 1 and 4 days after exercise. To visualize muscle injury, MRI of the loaded thigh was performed before and 4 days after the eccentric exercise. All participants recorded an increase (P < 0.05) in creatine kinase after exercise. In five participants, T2 signal intensity was unchanged post-exercise compared with pre-exercise and MHC plasma concentration was normal; however, they showed an increase (P < 0.05) in creatine kinase after exercise. For the remaining five participants, there was an increase in T2 signal intensity of the loaded vastus intermedius and vastus lateralis. These changes in MRI were accompanied by an increase in MHC plasma concentration (P< 0.01) as well as an increase in creatine kinase (P < 0.01). We suggest that changes in MRI T, signal intensity after muscle damage induced by eccentric exercise are closely related to damage to structurally bound contractile filaments of some muscle fibres. Additionally, MHC plasma release indicates that this damage affects not only fast-twitch fibres but also some slow-twitch fibres.  相似文献   

2.
运动性骨骼肌损伤标志的研究进展   总被引:3,自引:0,他引:3  
尽管血浆肌酸激酶(CK),肌红蛋白(Mb)和肌球蛋白重链(MHC)已经被广泛地用来评价运动性骨骼肌损伤,但是近来的研究显示所有这些指标都有其局限性。而与血浆CK,Mb和MHC形成对照,血浆骨骼肌肌钙蛋白抑制亚基(sTnI)可能是反映运动性骨骼肌损伤的一种特异性的早期敏感标志。  相似文献   

3.
In this study, we assessed the effect of exercise-induced muscle damage on knee extensor muscle strength during isometric, concentric and eccentric actions at 1.57 rad · s -1 and vertical jump performance under conditions of squat jump, countermovement jump and drop jump. The eight participants (5 males, 3 females) were aged 29.5 - 7.1 years (mean - s ). These variables, together with plasma creatine kinase (CK), were measured before, 1 h after and 1, 2, 3, 4 and 7 days after a bout of muscle damaging exercise: 100 barbell squats (10 sets 2 10 repetitions at 70% body mass load). Strength was reduced for 4 days ( P ? 0.05) but no significant differences ( P > 0.05) were apparent in the magnitude or rate of recovery of strength between isometric, concentric and eccentric muscle actions. The overall decline in vertical jump performance was dependent on jump method: squat jump performance was affected to a greater extent than countermovement (91.6 - 1.1% vs 95.2 - 1.3% of pre-exercise values, P ? 0.05) and drop jump (95.2 - 1.4%, P ? 0.05) performance. Creatine kinase was elevated ( P ? 0.05) above baseline 1 h after exercise, peaked on day 1 and remained significantly elevated on days 2 and 3. Strength loss after exercise-induced muscle damage was independent of the muscle action being performed. However, the impairment of muscle function was attenuated when the stretch-shortening cycle was used in vertical jumping performance.  相似文献   

4.
Cryotherapy is an effective treatment for acute sports injury to soft tissue, although the effect of cryotherapy on exercise-induced muscle damage is unclear. The aim of this study was to assess the effects of cold water immersion on the symptoms of exercise-induced muscle damage following strenuous eccentric exercise. After performing a bout of damage-inducing eccentric exercise (eight sets of five maximal reciprocal contractions at 0.58 rad x s(-1)) of the elbow flexors on an isokinetic dynamometer, 15 females aged 22.0+/-2.0 years (mean +/- s) were allocated to a control group (no treatment, n = 7) or a cryotherapy group (n = 8). Subjects in the cryotherapy group immersed their exercised arm in cold water (15 degrees C) for 15 min immediately after eccentric exercise and then every 12 h for 15 min for a total of seven sessions. Muscle tenderness, plasma creatine kinase activity, relaxed elbow angle, isometric strength and swelling (upper arm circumference) were measured immediately before and for 3 days after eccentric exercise. Analysis of variance revealed significant (P < 0.05) main effects for time for all variables, with increases in muscle tenderness, creatine kinase activity and upper arm circumference, and decreases in isometric strength and relaxed elbow angle. There were significant interactions (P<0.05) of group x time for relaxed elbow angle and creatine kinase activity. Relaxed elbow angle was greater and creatine kinase activity lower for the cryotherapy group than the controls on days 2 and 3 following the eccentric exercise. We conclude that although cold water immersion may reduce muscle stiffness and the amount of post-exercise damage after strenuous eccentric activity, there appears to be no effect on the perception of tenderness and strength loss, which is characteristic after this form of activity.  相似文献   

5.
The aim of this study was to examine changes in indirect markers of muscle damage during 3 weeks of stretch-shortening exercise with a progressively increasing load and continued modulation of various key training variables. Eight healthy untrained men performed a drop-jump programme involving a progressive increase in load impact with respect to the number of jumps performed, drop (platform) height, squat depth amplitude, and addition of weights. Maximal concentric and isometric knee extensor strength were assessed immediately before and 10?min after each training session. Voluntary and 100 Hz-stimulation-evoked torque decreased acutely after each training session relative to pre-exercise values (P?相似文献   

6.
Abstract

Exercise-induced muscle damage (EIMD), described as the acute weakness of the musculature after unaccustomed eccentric exercise, increases oxidative metabolism at rest and during endurance exercise. However, it is not known whether oxygen uptake during recovery from endurance exercise is increased when experiencing symptoms of EIMD. Therefore, the purpose of this study was to investigate the effects of EIMD on physiological and metabolic responses before, during and after sub-maximal running. After a 12 h fast, eight healthy male participants completed baseline measurements comprising resting metabolic rate (RMR), indirect markers of EIMD, 10 min of sub-maximal running and 30 min of recovery to ascertain excess post-exercise oxygen consumption (EPOC). Measurements were then repeated at 24 and 48 h after 100 Smith-machine squats. Data analysis revealed significant (P<0.05) increases in muscle soreness and creatine kinase (CK) and decreases in peak knee extensor torque at 24 and 48 h after squatting exercise. Moreover, RMR, physiological, metabolic and perceptual responses during sub-maximal running and EPOC were increased in the two days after squatting exercise (P<0.05). It is suggested that the elevated RMR was a consequence of a raised energy requirement for the degradation and resynthesis of damaged muscle fibres. The increased oxygen demand during sub-maximal running after muscle damage was responsible for the increase in EPOC. Individuals engaging in unaccustomed resistance exercise that results in muscle damage should be mindful of the increases in resting energy expenditure and increased metabolic demand to exercise in the days that follow.  相似文献   

7.
The first purpose of this study was to determine a possible explanation for the variability in the response to eccentric exercise by having participants repeat the same exercise 1 year apart. The second purpose was to examine whether initial injury in response to eccentric exercise was associated with the extent of the repeated bout effect (RBE). Male students performed 30 eccentric contractions (ECC) of the elbow flexors using a dumbbell set at 80% of the pre-exercise maximal isometric force (MIF). Participants were then classified into low (LR; n=6), medium (MR; n=6), high (HR; n=5), and higher (HrR; n=7) based on the increase in blood creatine kinase (CK) activity. A year later, participants repeated this exercise (ECC30). Four days after ECC30, participants performed 70 eccentric contractions (ECC70). Range of motion, MFI upper arm circumference, soreness, and blood CK activity were measured before and up to 9 days after each bout. The change in the criterion measures following ECC and ECC30 were similar for each group. There were no further changes in all parameters after ECC70 for MR, HR, and HrR, although there was a small increase in CK after ECC70 for LR. LR showed a smaller RBE after ECC70 compared with the other groups. It is concluded that participants who exercised 1 year apart showed remarkably similar responses between the bouts. The extent of the RBE following the second bout for the LR group is less for participants who demonstrate the least evidence of muscle damage after a first exercise bout.  相似文献   

8.
A well-documented observation after eccentric exercise is a reduction in maximal voluntary force. However, little is known about the ability to maintain maximal isometric force or generate and maintain dynamic peak power. These aspects of muscle function were studied in seven participants (5 males, 2 females). Knee extensor isometric strength and rate of fatigue were assessed by a sustained 60 s maximal voluntary contraction at 80 degrees and 40 degrees knee flexion, corresponding to an optimal and a shortened muscle length, respectively. Dynamic peak power and rate of fatigue were assessed during a 30 s Wingate cycle test. Plasma creatine kinase was measured from a fingertip blood sample. These variables were measured before, 1 h after and 1, 2, 3 and 7 days after 100 repetitions of the eccentric phase of the barbell squat exercise (10 sets x 10 reps at 80% concentric one-repetition maximum). Eccentric exercise resulted in elevations in creatine kinase activity above baseline (274+/-109 U x l(-1); mean +/- s(x)) after 1 h (506+/-116 U x l(-1), P < 0.05) and 1 day (808+/-117 U x l(-1), P < 0.05). Isometric strength was reduced (P < 0.05) for 7 days (35% at 1 h, 5% at day 7) and the rate of fatigue was lower (P < 0.05) for 3 days at 80 degrees and for 1 day at 40 degrees. Wingate peak power was reduced to a lesser extent (P < 0.05) than isometric strength at 1 h (13%) and, although the time course of recovery was equal, the two variables differed in their pattern of recovery. Eccentrically exercised muscle was characterized by an inability to generate high force and power, but an improved ability to maintain force and power. Such functional outcomes are consistent with the proposition that type II fibres are selectively recruited or damaged during eccentric exercise.  相似文献   

9.
Indirect markers of muscle damage and collagen breakdown were recorded for up to 9 days after a bout of concentric, followed by a bout of eccentric, muscle actions. Nine untrained participants performed two bouts of 50 maximum effort repetitions on an isokinetic dynamometer (angular velocity 1.05 rad x s(-1), range of motion 1.75 rad). An initial concentric bout of muscle actions was followed by an eccentric bout 21 days later, using the same knee extensors. Concentric actions induced no changes in maximum voluntary isometric contraction force (MVC), nor induced any changes in the serum enzyme activities of creatine kinase, a lactate dehydrogenase isoenzyme (LDH-1), or alkaline phosphatase. Similarly, concentric actions induced no change in markers of collagen breakdown, namely plasma hydroxyproline and serum type 1 collagen concentration. In contrast, eccentric actions induced a 23.5+/-19.0% (mean+/-s) decrease in MVC immediately post-exercise (P < 0.05), and increased the serum enzyme activities of creatine kinase and LDH-1 to 486+/-792 and 90+/-11 IU.l(-1) respectively on day 3 post-exercise, and to 189+/-159 and 96+/-13 IU x l(-1) respectively on day 7 post-exercise (all P< 0.05). Eccentric actions induced no significant changes in plasma hydroxyproline, but increased collagen concentration on days 1 and 9 post-exercise (48.6% and 44.3% increases above pre-exercise on days 1 and 9 respectively; both P < 0.05). We conclude that eccentric but not concentric actions may result in temporary muscle damage, and that collagen breakdown may also be affected by eccentric actions. With caution, indices of collagen breakdown may be used to identify exercise-induced damage to connective tissue.  相似文献   

10.
Indirect markers of muscle damage and collagen breakdown were recorded for up to 9 days after a bout of concentric, followed by a bout of eccentric, muscle actions. Nine untrained participants performed two bouts of 50 maximum effort repetitions on an isokinetic dynamometer (angular velocity 1.05 rad.s-1, range of motion 1.75 rad). An initial concentric bout of muscle actions was followed by an eccentric bout 21 days later, using the same knee extensors. Concentric actions induced no changes in maximum voluntary isometric contraction force (MVC),nor induced any changes in the serum enzyme activities of creatine kinase, a lactate dehydrogenase isoenzyme (LDH-1), or alkaline phosphatase. Similarly, concentric actions induced no change in markers of collagen breakdown,namely plasma hydroxyproline and serum type 1 collagen concentration.In contrast,eccentric actions induced a 23.5 ± 19.0% (mean ± s) decrease in MVC immediately post-exercise (P< 0.05), and increased the serum enzyme activities of creatine kinase and LDH-1 to 486 ± 792 and 90 ± 11 IU.l-1 respectively on day 3 post-exercise, and to 189 ± 159 and 96 ±13 IU.l-1 respectively on day 7 post-exercise (all P < 0.05). Eccentric actions induced no significant changes in plasma hydroxyproline, but increased collagen concentration on days 1 and 9 post-exercise (48.6% and 44.3% increases above pre-exercise on days 1 and 9 respectively; both P < 0.05). We conclude that eccentric but not concentric actions may result in temporary muscle damage, and that collagen breakdown may also be affected by eccentric actions. With caution, indices of collagen breakdown may be used to identify exercise-induced damage to connective tissue.  相似文献   

11.
In this study, we assessed the effect of exercise-induced muscle damage on knee extensor muscle strength during isometric, concentric and eccentric actions at 1.57 rad x s(-1) and vertical jump performance under conditions of squat jump, countermovement jump and drop jump. The eight participants (5 males, 3 females) were aged 29.5+/-7.1 years (mean +/- s). These variables, together with plasma creatine kinase (CK), were measured before, 1 h after and 1, 2, 3, 4 and 7 days after a bout of muscle damaging exercise: 100 barbell squats (10 sets x 10 repetitions at 70% body mass load). Strength was reduced for 4 days (P< 0.05) but no significant differences (P> 0.05) were apparent in the magnitude or rate of recovery of strength between isometric, concentric and eccentric muscle actions. The overall decline in vertical jump performance was dependent on jump method: squat jump performance was affected to a greater extent than countermovement (91.6+/-1.1% vs 95.2+/-1.3% of pre-exercise values, P< 0.05) and drop jump (95.2+/-1.4%, P< 0.05) performance. Creatine kinase was elevated (P < 0.05) above baseline 1 h after exercise, peaked on day 1 and remained significantly elevated on days 2 and 3. Strength loss after exercise-induced muscle damage was independent of the muscle action being performed. However, the impairment of muscle function was attenuated when the stretch-shortening cycle was used in vertical jumping performance.  相似文献   

12.
The first purpose of this study was to determine a possible explanation for the variability in the response to eccentric exercise by having participants repeat the same exercise 1 year apart. The second purpose was to examine whether initial injury in response to eccentric exercise was associated with the extent of the repeated bout effect (RBE). Male students performed 30 eccentric contractions (ECC) of the elbow flexors using a dumbbell set at 80% of the pre-exercise maximal isometric force (MIF). Participants were then classified into low (LR; n = 6), medium (MR; n = 6), high (HR; n = 5), and higher (HrR; n = 7) based on the increase in blood creatine kinase (CK) activity. A year later, participants repeated this exercise (ECC30). Four days after ECC30, participants performed 70 eccentric contractions (ECC70). Range of motion, MIF, upper arm circumference, soreness, and blood CK activity were measured before and up to 9 days after each bout. The change in the criterion measures following ECC and ECC30 were similar for each group. There were no further changes in all parameters after ECC70 for MR, HR, and HrR, although there was a small increase in CK after ECC70 for LR. LR showed a smaller RBE after ECC70 compared with the other groups. It is concluded that participants who exercised 1 year apart showed remarkably similar responses between the bouts. The extent of the RBE following the second bout for the LR group is less for participants who demonstrate the least evidence of muscle damage after a first exercise bout.  相似文献   

13.
Nine participants performed two bouts of a step exercise, during which the quadriceps muscle of one leg acted eccentrically. Before and after the exercise, isokinetic torque was measured over a range of knee angles to determine the optimum angle for torque. Immediately after the first bout of exercise, the quadriceps showed a significant (P < 0.05) shift of 15.6 +/- 1.4 degrees (mean +/-sx) of its optimum angle in the direction of longer lengths, suggesting the presence of damage. A drop in peak torque, together with delayed soreness and swelling, confirmed that damage to muscle fibres had occurred. After the second bout of exercise, 8 days later, the shift in optimum angle was 10.4 +/- 1.0 degrees, which was significantly less than after the first bout (P < 0.05). Other indicators of damage were also reduced. In addition, the muscle exhibited a sustained shift in optimum angle (3.4 +/- 0.9 degrees), suggesting that some adaptation had taken place after the first bout of exercise. We conclude that muscles like the quadriceps can show evidence of damage after a specific programme of eccentric exercise, followed by an adaptation response. This is despite the fact that the quadriceps routinely undergoes eccentric contractions in everyday activities.  相似文献   

14.
The aim of this study was to examine the impact of prolonged intermittent high-intensity shuttle running on soreness and markers of muscle damage. Sixteen males took part in the study, half of whom were assigned to a running group and half to a resting control group. The exercise protocol involved 90 min of intermittent shuttle running and walking (Loughborough Intermittent Shuttle Test: LIST), reflecting the activity pattern found in multiple-sprint sports such as soccer. Immediately after exercise, there was a significant increase (P < 0.05) in serum activities of creatine kinase and aspartate aminotransferase, and values remained above baseline for 48 h (P < 0.05). Median peak activities of creatine kinase and aspartate aminotransferase occurred 24 h post-exercise and were 774 and 43 U x l(-1), respectively. The intensity of general muscle soreness, and in the specific muscles investigated, was greater than baseline for 72 h after the shuttle test (P < 0.05), peaking 24-48 h post-exercise (P < 0.05). Muscle soreness was not correlated with either creatine kinase or aspartate aminotransferase activity. Soreness was most frequently reported in the hamstrings. Neither soreness nor serum enzyme activity changed in the controls over the 4 day observation period. It appears that unaccustomed performance of prolonged intermittent shuttle running produces a significant increase in both soreness and markers of muscle damage.  相似文献   

15.
Delayed-onset muscle soreness refers to the skeletal muscle pain that is experienced following eccentric exercise. The aim of the present study was to examine the physiological effects of physical activity with or without ibuprofen on delayed onset muscle soreness. Forty-four non-athletic male volunteers (age 24.3?±?2.4 years) were randomly assigned to one of four groups: physical activity (n = 11), ibuprofen (n = 11), physical activity and ibuprofen (combination, n = 11), or control (n = 11). The physical activity programme comprised 5?min of walking and jogging, 10?min of static stretching of the hands and shoulder girdle, and 5?min of concentric movements with sub-maximal contractions. The total amount of ibuprofen consumed by a single individual was 2800?mg; this was taken from 1?h before the eccentric actions up to 48?h after it. Delayed onset muscle soreness was induced by performing 70 eccentric contractions of the biceps muscle of the non-dominant side on a modified arm curl machine. Perceived muscle soreness, maximal eccentric contraction, creatine kinase enzyme activity and elbow range of motion were assessed 1?h before and 1, 24 and 48?h after the eccentric actions. The results indicated that, after the eccentric actions, soreness increased (P?<?0.001) across time in all groups, with the highest values being recorded at 24?h. At 24 and 48?h, greater soreness (P <?0.001) was observed in the control group than in the physical activity and combination groups. After the eccentric actions, creatine kinase increased and was elevated (P?<?0.001) compared with baseline in all groups, with values returning to baseline in the physical activity and combination groups by 48?h. However, creatine kinase in the control and ibuprofen groups was still significantly higher than at baseline after 48?h. Creatine kinase was higher (P?<?0.001) in the control group than in physical activity and combination groups at 24 and 48?h. There was also a reduction (P?<?0.001) in elbow range of motion across time. This reduction in elbow range of motion was greater (P?<?0.001) in the control and ibuprofen groups than in the physical activity and combination groups at 1, 24 and 48?h. The reduction in maximum eccentric contraction was greater (P?<?0.001) in the control and ibuprofen groups than in the physical activity group at 24 and 48?h and the combination group at 48?h. In conclusion, the results add to our understanding of the effects of physical activity and the combination of physical activity and ibuprofen in reducing the severity of muscle soreness induced by eccentric exercise. Physical activity conducted before eccentric exercise alleviates muscle soreness. Our results indicate that physical activity with or without ibuprofen helps to prevent delayed-onset muscle soreness.  相似文献   

16.
Delayed-onset muscle soreness refers to the skeletal muscle pain that is experienced following eccentric exercise. The aim of the present study was to examine the physiological effects of physical activity with or without ibuprofen on delayed onset muscle soreness. Forty-four non-athletic male volunteers (age 24.3 +/- 2.4 years) were randomly assigned to one of four groups: physical activity (n = 11), ibuprofen (n = 11), physical activity and ibuprofen (combination, n = 11), or control (n = 11). The physical activity programme comprised 5 min of walking and jogging, 10 min of static stretching of the hands and shoulder girdle, and 5 min of concentric movements with sub-maximal contractions. The total amount of ibuprofen consumed by a single individual was 2800 mg; this was taken from 1 h before the eccentric actions up to 48 h after it. Delayed onset muscle soreness was induced by performing 70 eccentric contractions of the biceps muscle of the non-dominant side on a modified arm curl machine. Perceived muscle soreness, maximal eccentric contraction, creatine kinase enzyme activity and elbow range of motion were assessed 1 h before and 1, 24 and 48 h after the eccentric actions. The results indicated that, after the eccentric actions, soreness increased (P < 0.001) across time in all groups, with the highest values being recorded at 24 h. At 24 and 48 h, greater soreness (P < 0.001) was observed in the control group than in the physical activity and combination groups. After the eccentric actions, creatine kinase increased and was elevated (P < 0.001) compared with baseline in all groups, with values returning to baseline in the physical activity and combination groups by 48 h. However, creatine kinase in the control and ibuprofen groups was still significantly higher than at baseline after 48 h. Creatine kinase was higher (P < 0.001) in the control group than in physical activity and combination groups at 24 and 48 h. There was also a reduction (P < 0.001) in elbow range of motion across time. This reduction in elbow range of motion was greater (P < 0.001) in the control and ibuprofen groups than in the physical activity and combination groups at 1, 24 and 48 h. The reduction in maximum eccentric contraction was greater (P < 0.001) in the control and ibuprofen groups than in the physical activity group at 24 and 48 h and the combination group at 48 h. In conclusion, the results add to our understanding of the effects of physical activity and the combination of physical activity and ibuprofen in reducing the severity of muscle soreness induced by eccentric exercise. Physical activity conducted before eccentric exercise alleviates muscle soreness. Our results indicate that physical activity with or without ibuprofen helps to prevent delayed-onset muscle soreness.  相似文献   

17.
Electromyographic analysis of repeated bouts of eccentric exercise   总被引:1,自引:0,他引:1  
The repeated bout effect refers to the protective effect provided by a single bout of eccentric exercise against muscle damage from a similar subsequent bout. The aim of this study was to determine if the repeated bout was associated with an increase in motor unit activation relative to force production, an increased recruitment of slow-twitch motor units or increased motor unit synchronization. Surface electromyographic (EMG) signals were recorded from the hamstring muscles during two bouts of submaximal isokinetic (2.6 rad x s(-1)) eccentric (11 men, 9 women) or concentric (6 men, 4 women) contractions separated by 2 weeks. The EMG per unit torque and median frequency were analysed. The initial bout of eccentric exercise resulted in strength loss, pain and muscle tenderness, while the repeated eccentric bout resulted in a slight increase in strength, no pain and no muscle tenderness (bout x time effects, P < 0.05). Strength, pain and tenderness were unaffected by either bout of concentric exercise. The EMG per unit torque and median frequency were not different between the initial and repeated bouts of eccentric exercise. The EMG per unit torque and median frequency increased during both bouts of eccentric exercise (P < 0.01) but did not change during either concentric bout. In conclusion, there was no evidence that the repeated bout effect was due to a neural adaptation.  相似文献   

18.
举重训练对血清酶和肌红蛋白水平的影响   总被引:19,自引:1,他引:18  
本文研究了举重训练对血清酶和肌红蛋白水平的影响。结果表明:大强度举重练习后受试者均出现血清CPK、LDH活性和Mb浓度的明显增加,并伴有不同程度的肌肉酸痛。然而,举重运动员运动后血清CPK、LDH和Mb的升高幅度明显小于体育系学生,且恢复快,肌肉酸痛程度也明显较轻。提示:大强度举重练习导致骨骼肌细胞一定的损伤,但经常的举重训练可使肌肉产生适应,减轻肌肉损伤的程度。  相似文献   

19.
The aim of this study was to assess the effects of cold-water immersion (cryotherapy) on indices of muscle damage following a bout of prolonged intermittent exercise. Twenty males (mean age 22.3 years, s = 3.3; height 1.80 m, s = 0.05; body mass 83.7 kg, s = 11.9) completed a 90-min intermittent shuttle run previously shown to result in marked muscle damage and soreness. After exercise, participants were randomly assigned to either 10 min cold-water immersion (mean 10 degrees C, s = 0.5) or a non-immersion control group. Ratings of perceived soreness, changes in muscular function and efflux of intracellular proteins were monitored before exercise, during treatment, and at regular intervals up to 7 days post-exercise. Exercise resulted in severe muscle soreness, temporary muscular dysfunction, and elevated serum markers of muscle damage, all peaking within 48 h after exercise. Cryotherapy administered immediately after exercise reduced muscle soreness at 1, 24, and 48 h (P < 0.05). Decrements in isometric maximal voluntary contraction of the knee flexors were reduced after cryotherapy treatment at 24 (mean 12%, s(x) = 4) and 48 h (mean 3%, s(x) = 3) compared with the control group (mean 21%, s(x) = 5 and mean 14%, s(x) = 5 respectively; P < 0.05). Exercise-induced increases in serum myoglobin concentration and creatine kinase activity peaked at 1 and 24 h, respectively (P < 0.05). Cryotherapy had no effect on the creatine kinase response, but reduced myoglobin 1 h after exercise (P < 0.05). The results suggest that cold-water immersion immediately after prolonged intermittent shuttle running reduces some indices of exercise-induced muscle damage.  相似文献   

20.
Strenuous physical exercise of the limb muscles commonly results in damage, especially when that exercise is intense, prolonged and includes eccentric contractions. Many factors contribute to exercise-induced muscle injury and the mechanism is likely to differ with the type of exercise. Competitive sports players are highly susceptible to this type of injury. AM3 is an orally administered immunomodulator that reduces the synthesis of proinflammatory cytokines and normalizes defective cellular immune fractions. The ability of AM3 to prevent chronic muscle injury following strenuous exercise characterized by eccentric muscle contraction was evaluated in a double-blind and randomized pilot study. Fourteen professional male volleyball players from the First Division of the Spanish Volleyball League volunteered to take part. The participants were randomized to receive either placebo (n=7) or AM3 (n=7). The physical characteristics (mean+/-s) of the placebo group were as follows: age 25.7+/-2.1 years, body mass 87.2+/-4.1 kg, height 1.89+/-0.07 m, maximal oxygen uptake 65.3+/-4.2 ml.kg(-1).min(-1). Those of the AM3 group were as follows: age 26.1+/-1.9 years, body mass 85.8+/-6.1 kg, height 1.91+/-0.07 m, maximal oxygen uptake 64.6+/-4.5 ml.kg(-1).min(-1). All participants were evaluated for biochemical indices of muscle damage, including concentrations of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatine kinase (CK) and its MB fraction (CK-MB), myoglobin, lactate dehydrogenase, urea, creatinine and gamma-glutamyltranspeptidase, both before and 30 days after treatment (over the peak of the competitive season). In the placebo group, competitive exercise (i.e. volleyball) was accompanied by significant increases in creatine kinase (494+/-51 to 560+/-53 IU.l(-1), P < 0.05) and myoglobin (76.8+/-2.9 to 83.9+/-3.1 microg.l(-1), P < 0.05); aspartate aminotransferase (30.8+/-3.0 to 31.1+/-2.9 IU.l(-1)) and lactate dehydrogenase (380+/-31 to 376+/-29 IU.l(-1)) were relatively unchanged after the 30 days maximum effort. AM3 not only inhibited these changes, it led to a decrease from baseline serum concentrations of creatine kinase (503+/-49 to 316+/-37 IU.l(-1), P < 0.05) and myoglobin (80.1+/-3.2 to 44.1+/-2.6 IU.l(-1), P < 0.05), as well as aspartate aminotransferase (31.1+/-3.3 to 26.1+/-2.7 IU.l(-1), P < 0.05) and lactate dehydrogenase (368+/-34 to 310+/-3 IU.l(-1), P < 0.05). The concentration of CK-MB was also significantly decreased from baseline with AM3 treatment (11.6+/-1.2 to 5.0+/-0.7 IU.l(-1), P < 0.05), but not with placebo (11.4+/-1.1 to 10.8+/-1.4 IU.l(-1)). In conclusion, the use of immunomodulators, such as AM3, by elite sportspersons during competition significantly reduces serum concentrations of proteins associated with muscle damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号