首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aims of this study were to determine the influence of an 8-over spell on cricket fast bowling technique and performance (speed and accuracy), and to establish the relationship of selected physical capacities with technique and performance during an 8-over spell. Fourteen first-grade fast bowlers with a mean age of 23 years participated in the study. Physical capacities assessed were abdominal strength, trunk stability, selected girth and skinfold measures. During the delivery stride, bowlers were filmed from an overhead and lateral perspective (50 Hz) to obtain two-dimensional data for transverse plane shoulder alignment and sagittal plane knee joint angle respectively. Ball speed was measured by a radar gun and accuracy by the impact point of each delivery on a zoned scoring target at the batter's stumps. Shoulder counter-rotation did not change significantly between overs 2 and 8 for all bowlers, but was significantly related to a more front-on shoulder orientation at back foot impact. When the front-on fast bowlers ( n = 5) were isolated for analysis, shoulder counter-rotation increased significantly between overs 2 and 8. Ball speed remained constant while accuracy showed some non-significant variation during the spell. Shoulder counter-rotation was significantly related to accuracy scores during the second half of the 8-over spell. Chest girth and composition and body composition were significantly related to ball release speed at various times during the spell.  相似文献   

2.
Abstract

This study aimed to assess changes in bowling technique and lumbar load over the course of a bowling spell in adolescent fast bowlers, and to investigate the relationship between lumbar loads during fast bowling and kinematic factors which have previously been associated with low back injury. Three-dimensional motion analysis was carried out on forty participants who performed an 8-over bowling spell. There were no significant changes in bowling technique or lumbar loads over the course of the spell. Bowling with a more extended front knee, faster ball release speed and increased shoulder counter-rotation were related to increased lumbo-pelvic loading – in particular peak transverse plane rotation moments and anterior-posterior shear forces. These lumbar loads may be a factor in low back injury aetiology and future studies should investigate the relationship between lumbar loading, injury incidence and other risk factors.  相似文献   

3.
The aim of this study was to examine the relationship between shoulder alignment and elbow angle during the delivery action of fast-medium bowlers. The elbow and upper trunk alignment were recorded for 13 high-performance bowlers (mean age 20 years) using a 12-camera Vicon motion analysis system operating at 250 Hz. The three highest velocity trials for "good" and "short" length deliveries were analysed. Results showed that bowlers with a more front-on shoulder alignment at back-foot impact and when the upper arm was horizontal to the ground experienced a significantly greater elbow flexion--extension range when compared with those who had a more side-on orientation at the same point in the delivery action. Bowlers with greater shoulder counter-rotation also recorded higher elbow flexion and subsequently extension during the period from upper arm horizontal to ball release. Shoulder alignment and elbow angles were similar for "short" and "good" length deliveries. It was concluded that bowlers with a more front-on shoulder orientation at back-foot impact demonstrated a higher elbow extension from upper arm horizontal to ball release and are therefore more likely to infringe International Cricket Council elbow tolerance levels, compared with those who adopt a more side-on shoulder orientation at back-foot impact.  相似文献   

4.
In this study we analysed technique, ball speed and trunk injury data collected at the Australian Institute of Sport (AIS) from 42 high performance male fast bowlers over a four year period. We found several notable technique inter-relationships, technique and ball speed relationships, and associations between technique and trunk injuries. A more front-on shoulder alignment at back foot contact was significantly related to increased shoulder counter-rotation (p < 0.001). Bowlers who released the ball at greater speeds had an extended front knee, or extended their front knee, during the front foot contact phase (p < 0.05). They also recorded higher braking and vertical impact forces during the front foot contact phase and developed those forces more rapidly (p < or =0.05). A maximum hip-shoulder separation angle occurring later in the delivery stride (p = 0.05) and a larger shoulder rotation to ball release (p = 0.05) were also characteristics of faster bowlers. Bowlers suffering lower back injuries exhibited typical characteristics of the 'mixed' technique. Specifically, the hip to shoulder separation angle at back foot contact was greater in bowlers who reported soft tissue injuries than in non trunk-injured bowlers (p = 0.03), and shoulder counter-rotation was significantly higher in bowlers who reported lumbar spine stress fractures than non trunk-injured bowlers (p = 0.01). The stress fracture group was also characterised by a larger hip angle at front foot contact and ball release, whereas a more flexed front knee at ball release characterised the non trunk-injured group.  相似文献   

5.
Back injuries and the fast bowler in cricket   总被引:5,自引:0,他引:5  
Here, I review research that has investigated the aetiology of injuries experienced by adolescent and adult fast bowlers. Mechanical factors play an important role in the aetiology of degenerative processes and injuries to the lumbar spine. This is particularly so in fast bowling, where a player must absorb vertical and horizontal components of the ground reaction force that are approximately five and two times body weight at front-foot and rear-foot impact, respectively. Attenuated forces are transmitted to the spine through the lower limb, while additional forces at the lumbo-sacral junction are caused by trunk hyperextension, lateral flexion and twisting during the delivery stride. Fast bowlers are classified as side-on, front-on or mixed. The mixed action is categorized by the lower body configuration of the front-on action and the upper body configuration of the side-on technique. This upper body configuration is produced by counter-rotation away from the batsman in the transverse plane about the longitudinal axis of the body of a line through the two shoulders. Counter-rotations of 12-40 degrees during a delivery stride have predicted an increased incidence of lumbar spondylolysis, disc abnormality and muscle injury in fast bowlers. During the delivery stride, the mixed bowling action also shows: more lateral flexion and hyperextension of the lumbar spine at front-foot impact, and a greater range of motion of the trunk over the delivery stride when compared with the side-on and front-on techniques. The pars interarticularis of each vertebra is vulnerable to injury if repetitive flexion, rotation and hyperextension are present in the activity. Fast bowlers should reduce shoulder counter-rotation during the delivery stride to reduce the incidence of back injuries. When a player is required to bowl for extended periods irrespective of technique, overuse is also related to an increased incidence of back injuries and must be avoided.  相似文献   

6.
Abstract

The aim of this study was to examine the relationship between shoulder alignment and elbow angle during the delivery action of fast-medium bowlers. The elbow and upper trunk alignment were recorded for 13 high-performance bowlers (mean age 20 years) using a 12-camera Vicon motion analysis system operating at 250 Hz. The three highest velocity trials for “good” and “short” length deliveries were analysed. Results showed that bowlers with a more front-on shoulder alignment at back-foot impact and when the upper arm was horizontal to the ground experienced a significantly greater elbow flexion – extension range when compared with those who had a more side-on orientation at the same point in the delivery action. Bowlers with greater shoulder counter-rotation also recorded higher elbow flexion and subsequently extension during the period from upper arm horizontal to ball release. Shoulder alignment and elbow angles were similar for “short” and “good” length deliveries. It was concluded that bowlers with a more front-on shoulder orientation at back-foot impact demonstrated a higher elbow extension from upper arm horizontal to ball release and are therefore more likely to infringe International Cricket Council elbow tolerance levels, compared with those who adopt a more side-on shoulder orientation at back-foot impact.  相似文献   

7.
Here, I review research that has investigated the aetiology of injuries experienced by adolescent and adult fast bowlers. Mechanical factors play an important role in the aetiology of degenerative processes and injuries to the lumbar spine. This is particularly so in fast bowling, where a player must absorb vertical and horizontal components of the ground reaction force that are approximately five and two times body weight at front-foot and rear-foot impact, respectively. Attenuated forces are transmitted to the spine through the lower limb, while additional foces at the lumbo-sacral junction are caused by trunk hyperextension, lateral flexion and twisting during the delivery stride. Fast bowlers are classified as side-on, front-on or mixed. The mixed action is categorized by the lower body configuration of the front-on action and the upper body configuration of the side-on technique. This upper body configuration is produced by counter-rotation away from the batsman in the transverse plane about the longitudinal axis of the body of a line through the two shoulders. Counter-rotations of 12–40° during a delivery stride have predicted an increased incidence of lumbar spondylolysis, disc abnormality and muscle injury in fast bowlers. During the delivery stride, the mixed bowling action also shows: more lateral flexion and hyperextension of the lumbar spine at front-foot impact, and a greater range of motion of the trunk over the delivery stride when compared with the side-on and front-on techniques. The pars interarticularis of each vertebra is vulnerable to injury if repetitive flexion, rotation and hyperextension are present in the activity. Fast bowlers should reduce shoulder counter-rotation during the delivery stride to reduce the incidence of back injuries. When a player is required to bowl for extended periods irrespective of technique, overuse is also related to an increased incidence of back injuries and must be avoided.  相似文献   

8.
The aim of the present study was to investigate the relationship between physiological and performance responses during repeated 6-over fast-bowling spells. Six, first-class, medium-fast bowlers performed 2x6-over spells separated by 45 min of light activity. The 6-over spells were based on the Cricket Australia fast bowling skills test that is a set order of deliveries at a grid-based target. Ball speed, accuracy and full and final 5-m run-up speed were measured on each ball. Nude mass, heart rate, core temperature, capillary blood lactate, pH and glucose, perceptual measures of RPE and muscle soreness (MS) and repeated vertical jump efforts were measured prior to, during and following each spell. Results indicated no decrement (P=0.41) and small effect sizes (d<0.2) in bowling speed (125.7+/-5.1 and 125.4+/-4.5 km.h(-1)) or accuracy (40.4+/-16.1 and 41.6+/-18.0 AU) between spells 1 and 2. No differences (P=0.6-0.8) were present between spells for heart rate, core temperature, lactate, pH, glucose, RPE, MS or vertical jump. Only final 5-m run-up speed showed a large correlation with ball speed (r=0.70), while accuracy and speed were not correlated (r=0.05). In conclusion, repeated 6-over spells in well-trained bowlers results in minimal performance decrement in mild conditions (22 degrees C). As faster bowlers had faster final 5-m run-up speeds, the maintenance of high final 5-m run-up speeds might be important to maintaining bowling speed. Future research should also include a third bowling spell and warmer environmental conditions.  相似文献   

9.
Lower back injuries, specifically lumbar stress fractures, account for the most lost playing time in professional cricket. The aims of this study were to quantify the proportion of lower trunk motion used during the delivery stride of fast bowling and to examine the relationship between the current fast bowling action classification system and potentially injurious kinematics of the lower trunk. Three-dimensional kinematic data were collected from 50 male professional fast bowlers during a standing active range of motion trial and three fast bowling trials. A high percentage of the fast bowlers used a mixed bowling action attributable to having shoulder counter-rotation greater than 30 degrees. The greatest proportion of lower trunk extension (26%), contralateral side-flexion (129%), and ipsilateral rotation (79%) was used during the front foot contact phase of the fast bowling delivery stride. There was no significant difference in the proportions of available lower trunk extension, contralateral side-flexion, and ipsilateral rotation range of motion used during fast bowling by mixed and non-mixed action bowlers. Motion of the lower trunk, particularly side-flexion, during front foot contact, in addition to variables previously known to be related to back injury (e.g. shoulder counter-rotation), should be examined in future cross-sectional and prospective studies examining the fast bowling action and low back injury.  相似文献   

10.
Abstract

Lower back injuries, specifically lumbar stress fractures, account for the most lost playing time in professional cricket. The aims of this study were to quantify the proportion of lower trunk motion used during the delivery stride of fast bowling and to examine the relationship between the current fast bowling action classification system and potentially injurious kinematics of the lower trunk. Three-dimensional kinematic data were collected from 50 male professional fast bowlers during a standing active range of motion trial and three fast bowling trials. A high percentage of the fast bowlers used a mixed bowling action attributable to having shoulder counter-rotation greater than 30°. The greatest proportion of lower trunk extension (26%), contralateral side-flexion (129%), and ipsilateral rotation (79%) was used during the front foot contact phase of the fast bowling delivery stride. There was no significant difference in the proportions of available lower trunk extension, contralateral side-flexion, and ipsilateral rotation range of motion used during fast bowling by mixed and non-mixed action bowlers. Motion of the lower trunk, particularly side-flexion, during front foot contact, in addition to variables previously known to be related to back injury (e.g. shoulder counter-rotation), should be examined in future cross-sectional and prospective studies examining the fast bowling action and low back injury.  相似文献   

11.
ABSTRACT

Fast bowling is categorised into four action types: side-on, front-on, semi-open and mixed; however, little biomechanical comparison exists between action types in junior fast bowlers. This study investigated whether there are significant differences between action-type mechanics in junior fast bowlers. Three-dimensional kinematic and kinetic analyses were completed on 60 junior male fast bowlers bowling a five-over spell. Mixed-design factorial analyses of variance were used to test for differences between action-type groups across the phases of the bowling action. One kinetic difference was observed between groups, with a higher vertical ground reaction force loading rate during the front-foot contact phase in mixed and front-on compared to semi-open bowlers; no other significant group differences in joint loading occurred. Significant kinematic differences were observed between the front-on, semi-open and mixed action types during the front-foot contact phase for the elbow and trunk. Significant kinematic differences were also present for the ankle, T12-L1, elbow, trunk and pelvis during the back-foot phase. Overall, most differences in action types for junior fast bowlers occurred during the back-foot contact phase, particularly trunk rotation and T12-L1 joint angles/ranges of motion, where after similar movement patterns were utilized across groups during the front-foot contact phase.  相似文献   

12.
The aim of this study was to assess the effect of pitch length (20.12 m [full length], 18 m and 16 m) on the fast bowling performance and technique of junior cricketers. Performance measures included ball release speed and accuracy, while technique variables evaluated were those shown to be related to the aetiology of lower back injury. Thirty-seven fast bowlers from the under-11 (n=14), under-13 (n=11) and under-15 (n=12) age groups were filmed bowling five deliveries at each of the above pitch lengths. Two synchronized NAC video cameras operating at 200 Hz permitted three-dimensional reconstruction of the hip and shoulder alignments, while a standard digital video camera operating at 50 Hz (positioned perpendicular to the bowling action) was used to measure front knee angle and ball release speed. Accuracy scores were taken from a zoned target at the batsman's stumps. A two-way analysis of variance with repeated measures (with age and pitch length as the between- and within-participant variables, respectively) was used to compare each age group at the 0.05 significance level. Results showed that accuracy improved in all age groups at shorter pitch lengths, although ball velocity remained constant throughout all trials. Shoulder counter-rotation increased significantly for the under-13 bowlers when bowling on the full-length pitch in comparison with the two shorter lengths. Counter-rotation also increased on the full-length pitch in the under-11 age group, although this increase was not significant. The under-15 bowlers' techniques did not change as pitch length increased. As under-11 and under-13 bowlers adopted a "safer" bowling action with superior accuracy on the 18?m compared with the full length pitch, it was concluded that these age groups should bowl on an 18?m pitch to reduce the likelihood of lower back injuries and improve accuracy.  相似文献   

13.
Due to the high incidence of lumbar spine injury in fast bowlers, international cricket organisations advocate limits on workload for bowlers under 19 years of age in training/matches. The purpose of this study was to determine whether significant changes in either fast bowling technique or movement variability could be detected throughout a 10-over bowling spell that exceeded the recommended limit. Twenty-five junior male fast bowlers bowled at competition pace while three-dimensional kinematic and kinetic data were collected for the leading leg, trunk and bowling arm. Separate analyses for the mean and within-participant standard deviation of each variable were performed using repeated measures factorial analyses of variance and computation of effect sizes. No substantial changes were observed in mean values or variability of any kinematic, kinetic or performance variables, which instead revealed a high degree of consistency in kinematic and kinetic patterns. Therefore, the suggestion that exceeding the workload limit per spell causes technique- and loading-related changes associated with lumbar injury risk is not valid and cannot be used to justify the restriction of bowling workload. For injury prevention, the focus instead should be on the long-term effect of repeated spells and on the fast bowling technique itself.  相似文献   

14.
15.
Cricket     
In this study we analysed technique, ball speed and trunk injury data collected at the Australian Institute of Sport (AIS) from 42 high performance male fast bowlers over a four year period. We found several notable technique interrelationships, technique and ball speed relationships, and associations between technique and trunk injuries. A more front‐on shoulder alignment at back foot contact was significantly related to increased shoulder counter‐rotation (p < 0.001). Bowlers who released the ball at greater speeds had an extended front knee, or extended their front knee, during the front foot contact phase (p < 0.05). They also recorded higher braking and vertical impact forces during the front foot contact phase and developed those forces more rapidly (p ≤ 0.05). A maximum hip‐shoulder separation angle occurring later in the delivery stride (p = 0.05) and a larger shoulder rotation to ball release (p = 0.05) were also characteristics of faster bowlers. Bowlers suffering lower back injuries exhibited typical characteristics of the ‘mixed’ technique. Specifically, the hip to shoulder separation angle at back foot contact was greater in bowlers who reported soft tissue injuries than in non trunk‐injured bowlers (p = 0.03), and shoulder counter‐rotation was significantly higher in bowlers who reported lumbar spine stress fractures than non trunk‐injured bowlers (p = 0.01). The stress fracture group was also characterised by a larger hip angle at front foot contact and ball release, whereas a more flexed front knee at ball release characterised the non trunk‐injured group.  相似文献   

16.
This study examined physiological and performance effects of pre-cooling on medium-fast bowling in the heat. Ten, medium-fast bowlers completed two randomised trials involving either cooling (mixed-methods) or control (no cooling) interventions before a 6-over bowling spell in 31.9±2.1°C and 63.5±9.3% relative humidity. Measures included bowling performance (ball speed, accuracy and run-up speeds), physical characteristics (global positioning system monitoring and counter-movement jump height), physiological (heart rate, core temperature, skin temperature and sweat loss), biochemical (serum concentrations of damage, stress and inflammation) and perceptual variables (perceived exertion and thermal sensation). Mean ball speed (114.5±7.1 vs. 114.1±7.2 km · h(-1); P = 0.63; d = 0.09), accuracy (43.1±10.6 vs. 44.2±12.5 AU; P = 0.76; d = 0.14) and total run-up speed (19.1±4.1 vs. 19.3±3.8 km · h(-1); P = 0.66; d = 0.06) did not differ between pre-cooling and control respectively; however 20-m sprint speed between overs was 5.9±7.3% greater at Over 4 after pre-cooling (P = 0.03; d = 0.75). Pre-cooling reduced skin temperature after the intervention period (P = 0.006; d = 2.28), core temperature and pre-over heart rates throughout (P = 0.01-0.04; d = 0.96-1.74) and sweat loss by 0.4±0.3 kg (P = 0.01; d = 0.34). Mean rating of perceived exertion and thermal sensation were lower during pre-cooling trials (P = 0.004-0.03; d = 0.77-3.13). Despite no observed improvement in bowling performance, pre-cooling maintained between-over sprint speeds and blunted physiological and perceptual demands to ease the thermoregulatory demands of medium-fast bowling in hot conditions.  相似文献   

17.
Fast bowling in cricket is an activity that is well recognised as having high injury prevalence and there has been debate regarding the most effective fast bowling technique. The aim of this study was to determine whether two-year coaching interventions conducted in a group of elite young fast bowlers resulted in fast bowling technique alteration. Selected kinematics of the bowling action of 14 elite young fast bowlers were measured using an 18 camera Vicon Motion Analysis system before and after two-year coaching interventions that addressed specific elements of fast bowling technique. Mann-Whitney tests were used to determine whether any changes in kinematic variables occurred pre- and post-intervention between those who had the coaching interventions and those who didn't. The coaching interventions, when applied, resulted in a more side-on shoulder alignment at back foot contact (BFC) (p = 0.002) and decreased shoulder counter-rotation (p = 0.001) however, there was no difference in the degree of change in back and front knee flexion angles or lower trunk side-flexion. This study has clearly shown that specific aspects of fast bowling technique are changeable over a two-year period in elite level fast bowlers and this may be attributed to coaching intervention.  相似文献   

18.
Kinematic studies have shown that fast bowlers have run-up velocities, based on centre of mass velocity calculations, which are comparable to elite javelin throwers. In this study, 34 fast bowlers (22.3 +/- 3.7 years) of premier grade level and above were tested using a three-dimensional (3-D) motion analysis system (240 Hz). Bowlers were divided into four speed groups: slow-medium, medium, medium-fast, and fast. The mean centre of mass velocity at back foot contact (run-up speed) was 5.3 +/- 0.6 m/s. Centre of mass velocity at back foot contact was significantly faster in the fastest two bowling groups compared to the slow-medium bowling group. In addition, stepwise multiple regression analysis showed that the centre of mass deceleration over the delivery stride phase was the strongest predictor of ball speed in the faster bowling groups. In conclusion, centre of mass kinematics are an important determinant of ball speed generation in fast bowlers. In particular, bowlers able to coordinate their bowling action with periods of centre of mass deceleration may be more likely to generate high ball speed.  相似文献   

19.
The elbow extension angle during bowling in cricket may be calculated from the positions of markers attached around the shoulder, elbow and wrist using an automated laboratory-based motion analysis system. The effects of two elbow-marker sets were compared. In the first, a pair of markers was placed medially and laterally close to the condyles while in the second a triad of markers was placed on the back of the upper arm close to the elbow. The root mean square (RMS) difference in elbow extension angle between the two methods at four key instants was 8° for 12 fast bowlers and 4° for 12 spin bowlers. When evaluated against video estimates of the elbow extension angle for the fast bowlers, the elbow extension angle calculated using the pair method had an RMS error of 2° while the triad method had an RMS error of 8°. The corresponding errors for the spin bowlers were 3° and 5°, respectively. It is thought that the greater errors associated with the triad is a consequence of soft tissue movement in this dynamic activity. This is consistent with the finding of greater error for the fast bowlers compared with the spin bowlers.  相似文献   

20.
Kinematic studies have shown that fast bowlers have run-up velocities, based on centre of mass velocity calculations, which are comparable to elite javelin throwers. In this study, 34 fast bowlers (22.3 ± 3.7 years) of premier grade level and above were tested using a three-dimensional (3-D) motion analysis system (240 Hz). Bowlers were divided into four speed groups: slow-medium, medium, medium-fast, and fast. The mean centre of mass velocity at back foot contact (run-up speed) was 5.3 ± 0.6 m/s. Centre of mass velocity at back foot contact was significantly faster in the fastest two bowling groups compared to the slow-medium bowling group. In addition, stepwise multiple regression analysis showed that the centre of mass deceleration over the delivery stride phase was the strongest predictor of ball speed in the faster bowling groups. In conclusion, centre of mass kinematics are an important determinant of ball speed generation in fast bowlers. In particular, bowlers able to coordinate their bowling action with periods of centre of mass deceleration may be more likely to generate high ball speed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号