首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
自然数方幂和S_k(n)=sum from m=1 to n m~k的表达式,伯努利于1713年就已给出,而对自然数方幂迭乘和 sum from m=1 to n m~kC_n~m=1~kC_n~1 2~kC_n~2 … n~kC_n~n ①(其中k,n为任意自然数),我们只见到一些特例,即k=0时,sum from m=1 to n C_n~m=2~n;k=1时,sum from m=1 to n mC_n~m=n·2~(n-1)等等。而当k为任意自然数时,尚未见到一般的直接计算公式。本文记 R_k(n)=sum from m=0 to n m~kC_n~m,可以利用待定系数法,简便地导出它的直接计算公式。  相似文献   

2.
命题设χ_i,a_i∈R~ (i=,2,3……,n),且sum from i=1 to n(χ_i)=(定值),则当χ_i=m(a_i)~(1/2)/sum from i=1 to n(i=1,2,……,n)时,和sum from i=1 to n(a_i/χ_i)取最小值,其最小值为1/m((sum from i=1 to n(a_i~(1/2)))~2  相似文献   

3.
4.
应用 k~2=k(k+1)/2+(k-1)k/2=C_(k+1)~2c+C_k~2,那么sum ∑ from k=1 to n=(C_2~2+…C_(n+1)~2)+(C_2~2+…+C_n~2)=C_(n+2)~2+C_(n+1)~8=((n+1)n(2n+1))/6  相似文献   

5.
通过研究,得知 sum i=1 to n+1 a_ic_n~(i-1)的结果与数列有密切的关系,有以下二个定理:定理1:当数列{a_i}是等比数列时,sum i=1 to n+1 a_ic_n~(i-1)=a_i(1+q)~n证明如下:∵{a_i}是等比数列,不妨设公比为 qsum i=1 to n+1 a_ic_n~(i-1)=a_1c_n~0+a_2c_n~+1+a_3c_n~2+…+a_bc~(n-1)_n+a_(n+1)c~n_n=a_1c~0_n+a_1c~1_nq+a_1c~2_nq~2+…+a_1c~n_nq~n=a_1(1+q)~q  相似文献   

6.
本文给出第2类Stirling数,Bernoulli数与Euler数的解析表示式: s_2(m+1,n)=(-1)~n/n1 sum form j=1 to n(-1)~j(?)_j~(-m+1) B_n=sum form k=1 to n 1/(k+1) sum form j=1 to k (-1)~j(?)_j~(-n) E_(2n) =1/(2n+1)[sum from p=0 to n-1 sum from k=1 to 2(n-p) sum from j=1 to k (-1)~(j-1)/(k+1)·(?)(?)(4j)~2(n-p)+4n+1]因此解决了它们的计算问题。  相似文献   

7.
当a_1,a_2,…,a_n为正实数时,有 1/n sum from i=1 to n(a_i~n)≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。事实上,该不等式可用(sum from i=1 to n(1/n)a_i)~n分隔,即(1/n)sum from i=1 to n(a_i~n)≥((1/n)sum from i=1 to n(a_i))~n≥multiply from i=1 to n(a_i)当且仅当a_1=a_2=…=a_n时取等号。  相似文献   

8.
1.证明,八个相邻正整数乘积的四次方根必非整数,而它的整数部分是 x~2+7x+6,这里 x 是这些相邻整数的起始者.2.设 k 和 l 为给定的实数,对任意两个实数 a,b,定义运算 a_ob=ab+k(a+b)+l.试问这种运算满足结合律(a·b)·c=a·(b·c)的充要条件是什么?3.设 o<λ_1≤λ_2≤…≤λ_n,a_i≥0(i=1,2,…,n).证明不等式sum from i=1 to n λ_ja_i sum from i=1 to n a_i/λ_i≤1/4((λ_1/λ_n)~(1/2)+(λ_n/λ_1)~(1/2))~2(sum from i=i to n a_i)~2.4.作一凸闭曲线,它并非圆,但它的周长等于πD,这里 D 是它的直径,即它所围成的闭区域内两点间的最大距离.  相似文献   

9.
本文给出m与n之间所有分母为a的既约分数的和S_a(本文中m,n,a是已知的自然数,m相似文献   

10.
本文证明了,当 r,n 为正整数,方程 sum from k=0 to n-1(1+2k)~=(1+2n)~无正整数  相似文献   

11.
杨辉恒等式即现行高中数学教材中所述组合数的第二个基本性质:C_(n-1)~(i-1) C_(n-1)~i=C_n~i(1≤i≤n-1)(1) 我们可以结合等差数列将其推广为定理设a_0,a_1,…,a_n是一个等差数列,则当0≤i≤n时,恒有 a_iC_n~i=a_nC_(n-1)~(i-1) a_0C_(n-1)~i(2) 证明:当i=0或n时,按规定有C_(n-1)~n=0,C_(n-1)~(-1)=0,此时,(2)式显然成立。当1≤i≤n-1时,设等差数列a_0,a_1,…,a_n的公差为d,则a_i=a_0 id (0≤i≤n),于是  相似文献   

12.
由公式C_n~k C_n~(k 1)=C_(n 1)~(k 1),可得:C_2~2 C_3~2 … C_n~2=C_(n 1)~3,sum from k=2 to nC_k~2=C_(n 1)~3,  相似文献   

13.
本文将切比雷夫不等式:“a_1≥a_2≥…≥a_n,b_1≥b_2≥…≥b_n(?)(sum from i=1 to n a~i)(sum from j=1 to n b_j)≤n sum from i,j to n a_ib_j”作如下的推广:如果{a_i}_(i=1)~n与{b_j}_(i=1)~n同时为单调增加或单调减少实数列,那么对于任何实数列{c_i}_(i=1)~n有(sum from i=1 to n a_ib_ic_i)(sum from i=1 to n c_i)(?)(sum from i=1 to n a_ic_i)(sum from j=1 to n b_jc_j) ……(Ⅰ) 如果{a_i}_(i=1)~n与{b_j}_(j=1)~n中有一个单调增加而另一个单调减少,那么对于任何非负实实数列{c_i}_(i=1)~n有(sum from i=1 to n a_ib_(ii))(sum from i=1 to n c_i)≤(sum from i=1 to n a_ic_i)(sum from j=1 to n b_jc_j)……(Ⅱ) 如果{c_i}_(i=1)~n为正的实数列,那么不等式(Ⅰ)、(Ⅱ)中的等号成立当且仅当{a_i}_(i=1)~n或{b_j}_(j=1)~n 中有一个是常数列。如果取c_i=1(i=1,2,…,n,那么就得原来的不等式。推广后的切比雷夫不等式的证明:在第一种情形下,sum from i=1 to n sum from j=1 to n (a~i-a_j)(b_i-b_j)c_ic_j  相似文献   

14.
设Smn=2n-11-2m2n-22+…+nm·(-1)n+1·nn,则对任意非负整数m、k有Sm3k=Amkm+Am-1km-1+…+A1k;Sm3k+1=Bmkm+Bm-1km-1+…+B1k+1;Sm3k+2=Cmkm+Cm-1km-1+…+C1k+3-2m;其中Ai,Bi,Ci(1≤i≤m)为待定常数  相似文献   

15.
若a∈R_ ,则有a≥2-1/a (*),等号当且仅当a=1时成立. 不等式(*)不仅结构简单,而且利用它还可以简捷地证明一些较难的不等式.下面举几例说明. 例1 设a_i,b_i∈R_ ,且sum from i=1 to n(a_i)=sum from i=1 to n(b_i),求证sum from i=1 to n(a_i~z)/(a_i b_i)≥1/2 sum from i=1 to n(a_i).(1991年亚太地区数学竞赛题)  相似文献   

16.
高中数学学过 C_n~0+C_n~1+C_n~2+…+C_n~n=2~n, C_n~1+2C_n~2+…+nC_n~n=n·2~(n-1), 即sum from j=0 to n C_n~j=2~n,(1) sum from j=0 to n jC_n~j=n·2~(n-1)。(2)  相似文献   

17.
文[1]证明了下述结果:设x_i∈R~ ,i=1,2,……,n,且Ⅱ_(i=1)~nx_i=1,则Ⅱ_(n=1)~n(x_i 1/(x_i))≥(n 1/n)~n (1)文[2]在末尾提出了如下猜想:设x_i∈R~ ,i=1,2,……,n,且Ⅱ_(i=1)~nx_i=k, k≤(2 5~(1/2))~(1/2),则Ⅱ_(i=1)~n(x_i 1/(x_i))≥(k/n n/k)~n (2)文[4]提出以下的改进:  相似文献   

18.
我们知道,柯西不等式:a_i,b_i∈R,则sum from i=1 to n a_i~2 sum from i=1 to n b_i~2≥(sum from i=1 to n a_ib_i)~2……(1)当且仅当a_i=kb_i(i=1,2,…,n)不等式等号成立。它可以作如下变形: 由(1)得(sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2)≥sum from i=1 to n a_ib_i,添项变为sum from i=1 to n a_i~2 2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≥sum from i=1 to n a_i~2 2sum from i=1 to n a_ib_i sum from i=1 to n b_i~2,或sum from i=1 to n a_i~2-2 (sum from i=1 to n a_i~2 sum from i=1 to n b_i~2)~(1/2) sum from i=1 to n b_i~2≤sum from i=1 to n a_i~2-2 sum from i=1 to n a_i b_i sum from i=1 to n b_i~2,分别配方,并开方转  相似文献   

19.
关于满足条件a_(m+k)=λ_1a_(n+k-1)+λ_2a(n+k-2)+…λ_ka_n的一元线性递归数列{a_n}的通项公式,已经有了很好的结论。本文对二重数列及满足简单条件A_m~n=λ_1A_(m-1)~n+λ_2A_(m-1)~(n-1)的二重线性递归数列的通项公式得到两个有用的定理。  相似文献   

20.
让我们先看下面两个例题: 例1 求证C_(n-1)~m C_(n-2)~m C_(n-3)~m… C_(m 1)~m C_m~m=C_n~(m 1) 证明:由等比数列求和公式知(1 x)~(n-1) (1 x)~(n-2) (1 x)~(n-3) … (1 x)~(m 1) (1 x)~m=((1 x)~n-(1 x)~m)/x上式左边x~m项的系数是 C_(n-1)~m C_(n-2)~m C_(n-3)~m … C_(n 1)~m C_m~m,上式右边的分子中,x~(m 1)项的系数是G_n~(m 1),应当相等,故等式成立。例2 证明: C_n~1 2C_n~2 3C_n~3 … C_n~n=n2~(n-1)。证明:将等式  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号