首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Abstract

Seven 6 s sprints with 30 s recovery between sprints were performed against two resistive loads: 50 (L50) and 100 (L100) g · kg?1 body mass. Inertia-corrected and -uncorrected peak and mean power output were calculated. Corrected peak power output in corresponding sprints and the drop in peak power output relative to sprint 1 were not different in the two conditions, despite the fact that mean power output was 15–20% higher in L100 (P < 0.01). The effect of inertia correction on power output was more pronounced for the lighter load (L50), with uncorrected peak power output in sprint 1 being 42% lower than the corresponding corrected peak power output, while this was only 16% in L100. Fatigue assessed by the drop in uncorrected peak and mean power output in sprint 7 relative to sprint 1 was less compared with that obtained by corrected power values, especially in L50 (drop in uncorrected vs. corrected peak power output: 13.3 ± 2.2% vs. 23.1 ± 4.1%, P < 0.01). However, in L100, the difference between the drop in corrected and uncorrected mean power output in sprint 7 was much smaller (24.2 ± 3.1% and 21.2 ± 2.7%, P < 0.01), indicating that fatigue may be safely assessed even without inertia correction when a heavy load is used. In conclusion, when inertia correction is performed, fatigue during repeated sprints is unaffected by resistive load. When inertia correction is omitted, both power output and the fatigue profile are underestimated by an amount dependent on resistive load. In cases where inertia correction is not possible during a repeated sprints test, a heavy load may be preferable.  相似文献   

2.
The aim of this study was to compare optimization and correction procedures for the determination of peak power output during friction-loaded cycle ergometry. Ten male and 10 female sports students each performed five 10-s sprints from a stationary start on a Monark 864 basket-loaded ergometer. Resistive loads of 5.0, 6.5, 8.0, 9.5, and 11.0% body weight were administered in a counterbalanced order, with a recovery period of 10 min between sprints. Peak power was greater and occurred earlier, with less work having been done before the attainment of peak power, when the data were corrected to account for the inertial and frictional characteristics of the ergometer. Corrected peak power was independent of resistive load (P > 0.05), whereas uncorrected peak power varied as a quadratic function of load (P < 0.001). For males and females, optimized peak power (971 +/- 122 and 668 +/- 37 W) was lower (P < 0.01) than either the highest (1074 +/- 111 and 754 +/- 56 W respectively) or the mean (1007 +/- 125 and 701 +/- 45 W respectively) of the five values for corrected peak power. Optimized and mean corrected peak power were highly correlated both in males (r = 0.97, P < 0.001) and females (r = 0.96, P < 0.001). The difference between optimized and mean corrected peak power was 37 +/- 30 W in males and 33 +/- 14 W in females, of which approximately 15 W was due to the correction for frictional losses. We conclude that corrected peak power is independent of resistive load in males and females.  相似文献   

3.
Six games players (GP) and six endurance-trained runners (ET) completed a standardized multiple sprint test on a non-motorized treadmill consisting of ten 6-s all-out sprints with 30-s recovery periods. Running speed, power output and oxygen uptake were determined during the test and blood samples were taken for the determination of blood lactate and pH. Games players tended to produce a higher peak power output (GP vs ET: 839 +/- 114 vs 777 +/- 89 W, N.S.) and higher peak speed (GP vs ET: 7.03 +/- 0.3 vs 6.71 +/- 0.3 m s-1, N.S.), but had a greater decrement in mean power output than endurance-trained runners (GP vs ET: 29.3 +/- 8.1% vs 14.2 +/- 11.1%, P less than 0.05). Blood lactate after the test was higher for the games players (GP vs ET: 15.2 +/- 1.9 vs 12.4 +/- 1.7 mM, P less than 0.05), but the decrease in pH was similar for both groups (GP vs ET: 0.31 +/- 0.08 vs 0.28 +/- 0.08, N.S.). Strong correlations were found between peak blood lactate and peak speed (r = 0.90, P less than 0.01) and between peak blood lactate and peak power fatigue (r = 0.92, P less than 0.01). The average increase in oxygen uptake above pre-exercise levels during the sprint test was greater for endurance-trained athletes than for the games players (ET vs GP: 35.0 +/- 2.2 vs 29.6 +/- 3.0 ml kg-1 min-1, P less than 0.05), corresponding to an average oxygen uptake per sprint (6-s sprint and 24 s of subsequent recovery) of 67.5 +/- 2.9% and 63.0 +/- 4.5% VO2 max respectively (N.S.). A modest relationship existed between the average increase in oxygen uptake above pre-exercise values during the sprint test and mean speed fatigue (r = -0.68, P less than 0.05). Thus, the greater decrement in performance for the games players may be related to higher glycolytic rates as reflected by higher lactate concentrations and to their lower oxygen uptake during the course of the 10 sprints.  相似文献   

4.
Abstract

The aim of this study was to compare optimization and correction procedures for the determination of peak power output during friction-loaded cycle ergometry. Ten male and 10 female sports students each performed five 10-s sprints from a stationary start on a Monark 864 basket-loaded ergometer. Resistive loads of 5.0, 6.5, 8.0, 9.5, and 11.0% body weight were administered in a counterbalanced order, with a recovery period of 10 min between sprints. Peak power was greater and occurred earlier, with less work having been done before the attainment of peak power, when the data were corrected to account for the inertial and frictional characteristics of the ergometer. Corrected peak power was independent of resistive load (P > 0.05), whereas uncorrected peak power varied as a quadratic function of load (P < 0.001). For males and females, optimized peak power (971 ± 122 and 668 ± 37 W) was lower (P < 0.01) than either the highest (1074 ± 111 and 754 ± 56 W respectively) or the mean (1007 ± 125 and 701 ± 45 W respectively) of the five values for corrected peak power. Optimized and mean corrected peak power were highly correlated both in males (r = 0.97, P < 0.001) and females (r = 0.96, P < 0.001). The difference between optimized and mean corrected peak power was 37 ± 30 W in males and 33 ± 14 W in females, of which approximately 15 W was due to the correction for frictional losses. We conclude that corrected peak power is independent of resistive load in males and females.  相似文献   

5.
We examined the effect of recovery pattern on mechanical and neuromuscular responses in active men during three repeated-sprint ability tests consisting of ten 6-s cycling sprints. Within each test, the recovery duration was manipulated: constant, increasing, and decreasing recovery pattern. Maximal voluntary contractions of the knee extensors were performed before and after the repeated-sprint ability tests to assess strength and electromyographic activity [root mean square (RMS)] of the quadriceps muscle. We observed different fatigue patterns for peak and mean power output between recovery patterns, with earlier decrements recorded during the increasing recovery pattern. Total work performed over the ten sprints was also lower in the increasing recovery pattern (43.8 +/- 5.4 kJ; P < 0.05). However, the decreasing recovery pattern induced a greater overall power output decrement across the sprints (-15.8%; P < 0.05), compared with the increasing recovery pattern (-5.1%) but not the constant recovery pattern (-10.1%). The decreasing recovery pattern was also associated with higher post-sprint RMS values (+16.2%; P < 0.05). Therefore, the recovery pattern within successive short sprints may influence repeated-sprint ability, and may lead to greater post-sprint neuromuscular adjustments when recovery intervals decrease between sprints. We conclude that peripheral impairments caused the major differences in repeated-sprint ability between recovery patterns.  相似文献   

6.
The aim of this study was to compare the cycling performance of cyclists and triathletes. Each week for 3 weeks, and on different days, 25 highly trained male cyclists and 18 highly trained male triathletes performed: (1) an incremental exercise test on a cycle ergometer for the determination of peak oxygen consumption (VO2peak), peak power output and the first and second ventilatory thresholds, followed 15 min later by a sprint to volitional fatigue at 150% of peak power output; (2) a cycle to exhaustion test at the VO2peak power output; and (3) a 40-km cycle time-trial. There were no differences in VO2peak, peak power output, time to volitional fatigue at 150% of peak power output or time to exhaustion at VO2peak power output between the two groups. However, the cyclists had a significantly faster time to complete the 40-km time-trial (56:18 +/- 2:31 min:s; mean +/- s) than the triathletes (58:57 +/- 3:06 min:s; P < 0.01), which could be partially explained (r = 0.34-0.51; P < 0.05) by a significantly higher first (3.32 +/- 0.36 vs 3.08 +/- 0.36 l x min(-1)) and second ventilatory threshold (4.05 +/- 0.36 vs 3.81 +/- 0.29 l x min(-1); both P < 0.05) in the cyclists compared with the triathletes. In conclusion, cyclists may be able to perform better than triathletes in cycling time-trial events because they have higher first and second ventilatory thresholds.  相似文献   

7.
In this study, we examined the effects of upper-body pre-cooling before intermittent sprinting exercise in a moderate environment. Seven male and three female trained cyclists (age 26.8+/-5.5 years, body mass 68.5+/-9.5 kg, height 1.76+/-0.13 m, V O2peak 59.0+/-11.4 mL. kg(-1). min(-1); mean+/-s) performed 30 min of cycling at 50% V O2peak interspersed with a 10-s Wingate cycling sprint test at 5 min intervals. The exercise was performed in a room controlled at 22 degrees C and 40% relative humidity. In the control session, the participants rested for 30 min before exercise. In the pre-cooling session, the participants wore the upper segment of a liquid conditioning garment circulating 5 degrees C coolant until rectal temperature decreased by 0.5 degrees C. Rectal temperature at the start of exercise was significantly lower in the pre-cooling (36.5+/-0.3 degrees C) than in the control condition (37.0+/-0.5 degrees C), but this difference was reduced to a non-significant 0.4 degrees C throughout exercise. Mean skin temperature was significantly lower in the pre-cooling (30.7+/-2.3 degrees C) than in the control condition (32.5+/-1.6 degrees C) throughout exercise. Heart rate during submaximal exercise was similar between the two conditions, although peak heart rate after the Wingate sprints was significantly lower in the pre-cooling condition. With pre-cooling, mean peak power (909+/-161 W) and mean overall power output (797+/-154 W) were similar to those in the control condition (peak 921+/-163 W, mean 806+/-156 W), with no differences in the subjective ratings of perceived exertion. These results suggest that upper-body pre-cooling does not provide any benefit to intermittent sprinting exercise in a moderate environment.  相似文献   

8.
The neural activation (iEMG) and selected stride characteristics of six male sprinters were studied for 100-, 200-, 300- and 400-m experimental sprints, which were run according to the velocity in the 400 m. Blood lactate (BLa) was analysed and drop jumps were performed with EMG registration at rest and after each sprint. Running velocity (P less than 0.001) and stride length (P less than 0.05) decreased and contact time increased (P less than 0.01) during the 400-m sprint. The increase in contact time was greatest immediately after runs of 100 and 300 m. The peak BLa increased and the rate of BLa accumulation decreased with running distance (P less than 0.001). The height of rise of the centre of mass in the drop jumps was smaller immediately after the 300 m (P less than 0.05) and the 400 m (P less than 0.01) than at rest, and it correlated negatively with peak BLa (r = -0.77, P less than 0.001). The EMG and EMG:running velocity ratio increased with running distance. It was concluded that force generation of the leg muscles had already begun to decrease during the first quarter of the 400-m sprint. The deteriorating force production was compensated for until about 200-300 m. Thereafter, it was impossible to compensate for fatigue and the speed of running dropped. According to this study, fatigue in the 400-m sprint among trained athletes is mainly due to processes within skeletal muscle rather than the central nervous system.  相似文献   

9.
The aim of this study was to compare sprint performance over 10 and 20 m when participants ran while towing resistances, weighing between 0 and 30% of body mass. The sample of 33 participants consisted of male rugby and soccer players (age 21.1 +/- 1.8 years, body mass 83.6 +/- 13.1 kg, height 1.82 +/- 0.1 m; mean +/- s). Each participant performed two sets of seven sprints over 20 m using a Latin rectangular design. The times were recorded at 10 and 20 m using electronic speed gates. The sprints of 13 players were video-recorded to allow calculation of stride length and frequency. For both sprints, a quadratic relationship was observed between sprint time and resistance as sprint time increased from 2.94 s to 3.80 s from 0 to 30% resistance. This relationship was statistically significant but considered not to be meaningful for performance because, over the range of resistances used in this study, the quadratic model was never more than 1% (in terms of sprint time) from the linear model. As resistance increased, the stride length shortened, with mean values of 1.63 +/- 0.13 m at 0% body mass and 1.33 +/- 0.13 m at 30% of body mass. There was no significant change in stride frequency with increasing resistance. The results show that in general there is an increase in sprint time with an increase in resistance. No particular resistance in the range tested (0 - 30%) can be recommended for practice.  相似文献   

10.
Abstract

Six games players (GP) and six endurance‐trained runners (ET) completed a standardized multiple sprint test on a non‐motorized treadmill consisting often 6‐s all‐out sprints with 30‐s recovery periods. Running speed, power output and oxygen uptake were determined during the test and blood samples were taken for the determination of blood lactate and pH. Games players tended to produce a higher peak power output (GP vs ET: 839 ± 114 vs 777 ± 89 W, N.S.) and higher peak speed (GP vs ET: 7.03 ± 0.3 vs 6.71 ± 0.3 m s‐1, N.S.), but had a greater decrement in mean power output than endurance‐trained runners (GP vs ET: 29.3 ± 8.1% vs 14.2 ± 11.1%, P < 0.05). Blood lactate after the test was higher for the games players (GP vs ET: 15.2 ± 1.9 vs 12.4 ± 1.7 mM, P < 0.05), but the decrease in pH was similar for both groups (GP vs ET: 0.31 ± 0.08 vs 0.28 ± 0.08, N.S.). Strong correlations were found between peak blood lactate and peak speed (r = 0.90, P < 0.01) and between peak blood lactate and peak power fatigue (r = 0.92, P<0.01). The average increase in oxygen uptake above pre‐exercise levels during the sprint test was greater for endurance‐trained athletes than for the games players (ET vs GP: 35.0 ± 2.2 vs 29.6 ± 3.0 ml kg‐1 min‐1 , P < 0.05), corresponding to an average oxygen uptake per sprint (6‐s sprint and 24 s of subsequent recovery) of 67.5 ± 2.9% and 63.0 ± 4.5% VO 2 max respectively (N.S.). A modest relationship existed between the average increase in oxygen uptake above pre‐exercise values during the sprint test and mean speed fatigue (r = ‐0.68, P < 0.05). Thus, the greater decrement in performance for the games players may be related to higher glycolytic rates as reflected by higher lactate concentrations and to their lower oxygen uptake during the course of the 10 sprints.  相似文献   

11.
Purpose: The aim of this study was to examine the effect of active versus passive recovery on 6 repeated Wingate tests (30-s all-out cycling sprints on a Velotron ergometer). Method: Fifteen healthy participants aged 29 (SD = 8) years old (body mass index = 23 [3] kg/m2) participated in 3 sprint interval training sessions separated by 3 to 7 days between each session during a period of 1 month. The 1st visit was familiarization to 6 cycling sprints; the 2nd and 3rd visits involved a warm-up followed by 6 30-s cycling sprints. Each sprint was followed by 4 min of passive (resting still on the ergometer) or active recovery (pedaling at 1.1 W/kg). The same recovery was used within each visit, and recovery type was randomized between visits. Results: Active recovery resulted in a 0.6 W/kg lower peak power output in the second sprint (95% confidence interval [CI] [ ? 0.2, ? 0.8 W/kg], effect size = 0.50, p < .01) and a 0.4 W/kg greater average power output in the 5th and 6th sprints (95% CI [+0.2,+0.6 W/kg], effect size = 0.50, p < .01) compared with passive recovery. There was little difference between fatigue index, total work, or accumulated work between the 2 recovery conditions. Conclusions: Passive recovery is beneficial when only 2 sprints are completed, whereas active recovery better maintains average power output compared with passive recovery when several sprints are performed sequentially (partial eta squared between conditions for multiple sprints = .38).  相似文献   

12.
Repeated bouts of sprint running after induced alkalosis.   总被引:1,自引:0,他引:1  
Seven healthy male subjects performed 10 maximal 6-s sprints, separated by 30-s recovery periods, on a non-motorized treadmill. On two occasions, separated by 3 days, the subjects ingested a solution of either sodium bicarbonate (NaHCO3; alkaline) or sodium chloride (NaCl; placebo), 2.5 h prior to exercise. The doses were 0.3 g kg-1 body mass for the alkaline treatment and 1.5 g total for the placebo, dissolved in 500 ml of water. The order of testing was randomly assigned. Pre-exercise blood pH was 7.43 +/- 0.02 and 7.38 +/- 0.01 for the alkaline and placebo trials respectively (P less than 0.01). Performance indices (i.e. mean and peak power outputs and mean and peak running speeds) were significantly reduced as a result of the cumulative effects of successive sprints, but not significantly affected by the treatments. However, the total work done (i.e. mean power output) in the alkaline condition was 2% higher than that achieved in the placebo condition. Post-exercise blood lactate concentrations were higher for the alkaline treatment than for the placebo condition (15.3 +/- 3.7 vs 13.6 +/- 3.0 mM respectively; P less than 0.01), but blood pH was similar in both conditions (alkaline: 7.15 +/- 0.13; placebo: 7.09 +/- 0.11). In both conditions, a relationship was found between post-exercise blood lactate and mean power output (alkaline: r = 0.82, P less than 0.01; placebo: r = 0.79, P less than 0.01). No significant differences were found in VE, VO2 and VCO2 between the two experimental conditions. This study demonstrates that alkali ingestion results in significant shifts in the acid-base balance of the blood, but has no effect on the power output during repeated bouts of brief maximal exercise.  相似文献   

13.
The aim of this study was to examine the consistency or reproducibility of measuring cycling peak power in children and adults. Twenty-seven pre-pubertal girls and boys and 27 female and male physical education students (age 9.8 +/- 0.5 and 24.4 +/- 4.3 years, respectively; mean +/- s) participated in the study. All participants performed five tests over 15 days and underwent a habituation session before the study. Each test included four sprints against four different braking forces. We found that braking forces of 7.5% of body weight in children and 10% of body weight in adults were too high for most of the participants to elicit maximal cycling power. Unlike the children, the physical education students improved their performance between session 1 and session 2 (1025 +/- 219 vs 1069 +/- 243 W; P < 0.001). Therefore, to obtain reproducible measures of cycling peak power, a habituation session including a complete test protocol (i.e. warm-up plus three sprints) is highly recommended. When the protocol included three sprints in children and at least two sprints in adults, measurement of cycling peak power was found to be highly reliable (test-retest coefficient of variation approximately 3%). Finally, to avoid performance fluctuations, especially over several consecutive evaluations (e.g. longitudinal studies), it is necessary to maintain high motivation in children.  相似文献   

14.
Attenuated performance during intense exercise with limited endogenous carbohydrate (CHO) is well documented. Therefore, this study examined whether caffeine (CAF) mouth rinsing would augment performance during repeated sprint cycling in participants with reduced endogenous CHO. Eight recreationally active males (aged 23?±?2?yr, body mass 84?±?4?kg, stature 178?±?7?cm) participated in this randomized, single-blind, repeated-measures crossover investigation. Following familiarization, participants attended two separate evening glycogen depletion sessions. The following morning, participants completed five, 6?s sprints on a cycle ergometer (separated by 24?s active recovery), with mouth rinsing either (1) a placebo solution or (2) a 2% CAF solution. During a fifth visit, participants completed the sprints without prior glycogen depletion. Repeated-measures ANOVA identified significant main effect of condition (CAF, placebo, and control [P?P?P?P?P?P?相似文献   

15.
The aim of this study was to determine the relationship between force and velocity parameters during a specific multi-articular upper limb movement--namely, hand rim propulsion on a wheelchair ergometer. Seventeen healthy able-bodied females performed nine maximal sprints of 8 s duration with friction torques varying from 0 to 4 N x m. The wheelchair ergometer system allows measurement of forces exerted on the wheels and linear velocity of the wheel at 100 Hz. These data were averaged for the duration of each arm cycle. Peak force and the corresponding maximal velocity were determined during three consecutive arm cycles for each sprint condition. Individual force-velocity relationships were established for peak force and velocity using data for the nine sprints. In line with the results of previous studies on leg cycling or arm cranking, the force-velocity relationship was linear in all participants (r = -0.798 to -0.983, P < 0.01). The maximal power output (mean 1.28 W x kg(-1)) and the corresponding optimal velocity (1.49 m x s(-1)) and optimal force (52.3 N) calculated from the individual force-velocity regression were comparable with values reported in the literature during 20 or 30 s wheelchair sprints, but lower than those obtained during maximal arm cranking. A positive linear relationship (r = 0.678, P < 0.01) was found between maximal power and optimal velocity. Our findings suggest that although absolute values of force, velocity and power depend on the type of movement, the force-velocity relationship obtained in multi-articular limb action is similar to that obtained in wheelchair locomotion, cycling and arm cranking.  相似文献   

16.
Abstract

We examined the effect of recovery pattern on mechanical and neuromuscular responses in active men during three repeated-sprint ability tests consisting of ten 6-s cycling sprints. Within each test, the recovery duration was manipulated: constant, increasing, and decreasing recovery pattern. Maximal voluntary contractions of the knee extensors were performed before and after the repeated-sprint ability tests to assess strength and electromyographic activity [root mean square (RMS)] of the quadriceps muscle. We observed different fatigue patterns for peak and mean power output between recovery patterns, with earlier decrements recorded during the increasing recovery pattern. Total work performed over the ten sprints was also lower in the increasing recovery pattern (43.8 ± 5.4 kJ; P < 0.05). However, the decreasing recovery pattern induced a greater overall power output decrement across the sprints (?15.8%; P < 0.05), compared with the increasing recovery pattern (?5.1%) but not the constant recovery pattern (?10.1%). The decreasing recovery pattern was also associated with higher post-sprint RMS values (+16.2%; P < 0.05). Therefore, the recovery pattern within successive short sprints may influence repeated-sprint ability, and may lead to greater post-sprint neuromuscular adjustments when recovery intervals decrease between sprints. We conclude that peripheral impairments caused the major differences in repeated-sprint ability between recovery patterns.  相似文献   

17.
Graded exercise tests are commonly used to assess peak physiological capacities of athletes. However, unlike time trials, these tests do not provide performance information. The aim of this study was to examine the peak physiological responses of female outrigger canoeists to a 1000-m ergometer time trial and compare the time-trial performance to two graded exercise tests performed at increments of 7.5 W each minute and 15 W each two minutes respectively. 17 trained female outrigger canoeists completed the time trial on an outrigger canoe ergometer with heart rate (HR), stroke rate, power output, and oxygen consumption (VO2) determined every 15 s. The mean (+/- s) time-trial time was 359 +/- 33 s, with a mean power output of 65 +/- 16 W and mean stroke rate of 56 +/- 4 strokes min(-1). Mean values for peak VO2, peak heart rate, and mean heart rate were 3.17 +/- 0.67 litres min(-1), 177 +/- 11 beats min(-1), and 164 +/- 12 beats min(-1) respectively. Compared with the graded exercise tests, the time-trial elicited similar values for peak heart rate, peak power output, peak blood lactate concentration, and peak VO2. As a time trial is sport-specific and can simultaneously quantify sprint performance and peak physiological responses in outrigger canoeing, it is suggested that a time trial be used by coaches for crew selection as it doubles as a reliable performance measure and a protocol for monitoring peak aerobic capacity of female outrigger canoeists.  相似文献   

18.
The aim of this study was to predict indoor rowing performance in 12 competitive female rowers (age 21.3 +/- 3.6 years, height 1.68 +/- 0.54 m, body mass 67.1 +/- 11.7 kg; mean +/- s) using a 30 s rowing sprint, maximal oxygen uptake and the blood lactate response to submaximal rowing. Blood lactate and oxygen uptake (VO2) were measured during a discontinuous graded exercise test on a Concept II rowing ergometer incremented by 25 W for each 2 min stage; the highest VO2 measured during the test was recorded as VO2max (mean = 3.18 +/- 0.35 l.min-1). Peak power (380 +/- 63.2 W) and mean power (368 +/- 60.0 W) were determined using a modified Wingate test protocol on the Concept II rowing ergometer. Rowing performance was based on the results of the 2000 m indoor rowing championship in 1997 (466.8 +/- 12.3 s). Laboratory testing was performed within 3 weeks of the rowing championship. Submitting mean power (Power), the highest and lowest five consecutive sprint power outputs (Maximal and Minimal), percent fatigue in the sprint test (Fatigue), VO2max (l.min-1), VO2max (ml.kg-1.min-1), VO2 at the lactate threshold, power at the lactate threshold (W), maximal lactate concentration, lactate threshold (percent VO2max) and VEmax (l.min-1) to a stepwise multiple regression analysis produced the following model to predict 2000 m rowing performance: Time2000 = -0.163 (Power) -14.213.(VO2max l.min-1) +0.738.(Fatigue) 7.259 (R2 = 0.96, standard error = 2.89). These results indicate that, in the women studied, 75.7% of the variation in 2000 m indoor rowing performance time was predicted by peak power in a rowing Wingate test, while VO2max and fatigue during the Wingate test explained an additional 12.1% and 8.2% of the variance, respectively.  相似文献   

19.
The aim of this study was to characterize sprint ability, anthropometry, and lower extremity power in the US National Team Skeleton athletes. Fourteen athletes (male n = 7; mean +/- SD: height 1.794 +/- 0.063 m, body mass 81.2 +/- 3.7 kg, age 26.9 +/- 4.1 years; female n = 7; 1.642 +/- 0.055 m, 60.1 +/- 5.9 kg, 27.3 +/- 6.9 years) volunteered to participate. Sprinting ability was measured over multiple intervals using custom infrared timing gates in both an upright and a crouched sprint. The crouched sprint was performed while pushing a wheeled-simulated skeleton sled on rails on an outdoor skeleton and bobsleigh start track. Crouched skeleton sprint starts were able to achieve about 70% to 85% of the upright sprint times. The mean somatotype ratings for females were: 3.5-3.5-2.1, and males: 3.6-4.9-1.9. Lower extremity strength and power were measured via vertical jumps on a portable force platform using squat and countermovement jumps, and jumps with added mass. Jump height, power, rate offorce development and peak force were determined from force-time data. Lower extremity strength and power were strongly correlated with both upright and crouched sprint times. The results indicated that these athletes are strong sprinters with varying body structures, mostly mesomorphic, and that stronger and more powerful athletes tend to be better starters.  相似文献   

20.
This study investigated the influence of a horizontal approach to mechanical output during drop jumps. Participants performed drop jumps from heights of 15, 30, 45, and 60 cm with zero, one, two, and three approach steps. The peak summed power during the push-off phase changed quadratically across heights (6.2 +/- 0.3, 6.7 +/- 0.4, 6.4 +/- 0.4, and 6.0 +/- 0.4 kW, respectively) driven by the ankle joint response. Summed peak power was 10% greater with an approach attributed to the knee joint response. Downward phase dorsiflexion (31%), knee flexion (35%), and peak vertical force (32%) increased with drop heights. Vertical approach force (22%) increased, while knee flexion (11%) and downward duration (17%) decreased. An approach may improve drop jump training for explosive tasks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号