首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
利用有限元软件ABAQUS对纯钢框架试件、冷弯薄壁型钢组合墙体试件、钢框架-冷弯薄壁型钢组合墙体试件、覆双面OSB板的钢框架-冷弯薄壁型钢组合墙体试件进行水平低周往复荷载作用下研究,分析了试件的滞回曲线、骨架曲线、抗侧刚度、延性和耗能等。结果表明,钢框架与冷弯薄壁型钢组合墙体有明显的组合效应;冷弯薄壁型钢组合墙体能明显增强钢框架结构的承载力、刚度、延性和耗能能力;覆双面OSB板钢框架-冷弯薄壁型钢组合墙体结构抗震性能较不覆板的钢框架-冷弯薄壁型钢组合墙体结构抗震性能好。  相似文献   

2.
二次受力下碳纤维布加固梁抗弯性能试验研究   总被引:1,自引:0,他引:1  
进行了4根不同二次受力条件下碳纤维布加固的钢筋混凝土梁和1根对比混凝土梁的抗弯性能试验研究。试验及分析结果表明,用粘贴碳纤维布的方法来提高梁的承载力十分有效,且预加载的存在使加固梁的极限荷载降低;碳纤维布能有效约束裂缝的开展,但裂缝的数量增加和分布区域变大,且预加载的大小会影响加固梁裂缝的开展和分布;碳纤维布加固可以增强梁的刚度,但延性有所降低。  相似文献   

3.
Carbon fiber reinforced polymer(CFRP)bars were prestressed for the structural strengthening of 8 T-shaped rein-forced concrete (RC)beams of a 21-year-old bridge in China.The ultimate bearing capacity of the existing bridge after retrofit was discussed on the basis of concrete structures theory.The flexural strengths of RC beams strengthened with CFRP bars were controlled by the failure of concrete in compression and a prestressing method was applied in the retrofit.The field construction processes of strengthening with CFRP bars-including grouting cracks,cutting groove,grouting epoxy and embedding CFRP bars,surface treating,banding with the U-type CFRP sheets,releasing external prestressed steel tendons-were introduced in detail.In order to evaluate the effectiveness of this strengthening method,field tests using vehicles as live load were applied before and after the retrofit.The test results of deflection and concrete strain of the T-shaped beams with and without strengthening show that the capacity of the repaired bridge,including the bending strength and stiffness,is enhanced.The measurements of crack width also indicate that this strengthening method can enhance the durability of bridges.Therefore,the proposed strengthening technology is feasible and effective.  相似文献   

4.
为实现装配式结构震损后能快速修复以恢复使用功能,提出一种带可恢复功能节点的装配式框架结构体系。利用ABAQUS 有限元软件对可恢复功能节点进行数值模拟,探讨可恢复功能节点的作用机理,并将可恢复功能节点布置到装配式框架结构中形成可恢复功能装配式框架结构,考察整体结构的受力机理,可更换耗能铰、装配式节点核心区与梁柱部件的失效演化规律。结果表明,节点的失效主要是由于可恢复功能节点在削弱钢板处的损伤累积引起的断裂导致?与现浇混凝土框架及节点加强型现浇混凝土框架相比,可恢复功能装配式框架的承载能力更高、延性更好,通过可更换耗能铰的塑性变形耗散能量大幅度提高了结构的耗能能力,且结构的损伤破坏集中在削弱钢板上,有效地避免了预制梁柱和节点核心区的损伤。震后通过更换损伤耗能元件即可恢复结构的使用功能,实现了损伤可控和震后功能可恢复的抗震设防理念,具有广泛的应用前景。  相似文献   

5.
采用Ansys有限元软件对8根不同锈蚀率的FRP片材加固钢筋混凝土梁的受弯性能进行数值分析,研究纵筋锈蚀率对FRP加固梁的裂纹开展、破坏模式、承载能力以及延性和变形能力的影响.研究结果表明:低钢筋锈蚀率的梁发生受压区混凝土压碎破坏;中等锈蚀率的梁钢筋屈服后,钢筋与混凝土界面发生黏结滑移,最后FRP剥离破坏;高锈蚀率的梁钢筋没有达到屈服强度便发生黏结滑移,最后发生受压区混凝土压碎破坏.钢筋锈蚀越严重,FRP加固钢筋混凝土梁的承载力降低得越多.试件RCB-1(锈蚀率为0)的承载力为115 kN,而试件RCB-7(锈蚀率为20%)的承载力仅为42 kN.与FRP加固未锈蚀的钢筋混凝土梁相比,FRP加固锈蚀钢筋混凝土梁的变形能力较高.试件RCB-1和试件RCB-7的最大跨中挠度分别为20 mm和35 mm,而试件RCB-5(锈蚀率为10%)的最大跨中挠度达到了60 mm.  相似文献   

6.
INTRODUCTION Externally bonded fiber reinforced polymer (FRP) composites can be used to improve the flexural strength of structural members. To evaluate the flex-ural performance of the strengthened members, it is necessary to study the flexural stiffness of FRP- strengthened RC members at different stages, such as pre-cracking, post-cracking and post-yielding. Up to now, only very few studies were focused on the structural members strengthened under pre-loading or pre-cracking (Arduin…  相似文献   

7.
Carbon fiber reinforced polymer (CFRP) bars were prestressed for the structural strengthening of 8 T-shaped reinforced concrete (RC) beams of a 21-year-old bridge in China. The ultimate bearing capacity of the existing bridge after retrofit was discussed on the basis of concrete structures theory. The flexural strengths of RC beams strengthened with CFRP bars were controlled by the failure of concrete in compression and a prestressing method was applied in the retrofit. The field construction processes of strengthening with CFRP bars including grouting cracks, cutting groove, grouting epoxy and embedding CFRP bars, surface treating, banding with the U-type CFRP sheets, releasing external prestressed steel tendons-were introduced in detail. In order to evaluate the effectiveness of this strengthening method, field tests using vehicles as live load were applied before and after the retrofit. The test results of deflection and concrete strain of the T-shaped beams with and without strengthening show that the capacity of the repaired bridge, including the bending strength and stiffness, is enhanced. The measurements of crack width also indicate that this strengthening method can enhance the durability of bridges. Therefore, the proposed strengthening technology is feasible and effective.  相似文献   

8.
A pseudo-dynamic testing program was generated on a fabricated composite frame with steel plate shear walls (SPSWs) to study its seismic performance. The specimen was a three-storey single-bay frame, which was composed of H-section steel columns and composite beams, and was assembled by bolted height-adjustable steel beam-to-column connections (BHA connections). Beam-only-connected SPSWs were selected as lateral load resisting members. The specimen was subjected to four ground motions of progressively increasing intensity. The results showed that: (1) beam-only-connected SPSWs provided sufficient lateral load resistance, lateral stiffness, and energy dissipation capacity to the fabricated frame via the tension field action developed in their infill panels; (2) the fabricated frame, assembled by BHA connections, exhibited substantial redundancy and good ductility; (3) an undesirable failure mode of the fabricated frame, in huge earthquakes, included severe cracking in composite beams and block shear failure in SPSWs’ connections; (4) the inter-storey shear force distribution determined by ASCE/SEI 7-10 was verified with experimental data.  相似文献   

9.
INTRODUCTION There is increased need in recent years for strengthening or rehabilitation of existing reinforced concrete structures adversely affected by overloading, construction material deterioration, seismic loads, structural deformation, etc. An effective method for increasing the shear capacity of reinforced concrete columns is the use of externally bonded carbon fiber reinforced plastic (CFRP) systems (ACI, 2002). FRP systems were first applied to reinforced concrete col-umns i…  相似文献   

10.
根据内置CFRP圆管的方钢管高强混凝土的特点,通过引入混凝土强度折减系数和等效约束折减系数,将内置CFRP圆管的方钢管高强混凝土等效为内置CFRP圆管的圆钢管高强混凝土。进而,在统一强度理论的基础上,推导出内置CFRP圆管的方钢管高强混凝土轴压构件的强度承载力。通过引入整体稳定系数,推导出内置CFRP圆管的方钢管高强混凝土轴压中长柱的稳定极限承载力公式。将该公式的计算结果与试验结果进行了比较,结果表明该理论公式是正确可行的。理论公式以期能为工程应用提供帮助。  相似文献   

11.
通过对填充墙钢框架和同尺寸纯钢框架结构的数值模拟,从两种不同形式的框架结构在单调荷载作用下的荷载——位移曲线、低周反复荷载作用下的滞回曲线、骨架曲线及刚度退化曲线,分析得知填充墙钢框架体系是一种理想的抗侧力体系,其优势表现在该结构的耗能能力、极限承载能力、延性、变形恢复能力及抗侧刚度均优于纯钢框架。  相似文献   

12.
采用ANSYS软件进行了数值模拟,分别对比了三种型钢截面形式和i种轴压比对型钢高强混凝土柱的延性和耗能性能的影响。从计算结果可以看出,轴压比越小,延性系数越大,抗震性能越好;带翼缘十字形型钢柱的延性比不带翼缘十字形型钢柱的延性好。  相似文献   

13.
To investigate the seismic behavior of connections composed of steel reinforced ultra high strength concrete (SRUHSC) column and reinforced concrete (RC) beam, six interior strong-column-weak-beam connection specimens were tested subjected to reversal cyclic load. Effects of applied axial load ratio and volumetric stirrup ratio on ductility, energy dissipation capacity, strength degradation and rigidity degradation were discussed. It was found that all connection specimens failed in bending in a ductile manner with a beam plastic hinge. The ductility and energy dissipation capacity increased with the decrease of applied axial load ratio or increase of volumetric stirrup ratio. The displacement ductility coefficient and equivalent damping coefficient lay between those of steel reinforced ordinary concrete connection and those of reinforced concrete connection. The applied axial load ratio and volumetric stirrup ratio had less influence on the strength degradation and more influence on the stiffness degradation. The stiffness degraded sharply with the decrease of volumetric stirrup ratio or increase of applied axial load ratio. The experimental results indicate that SRUHSC column and RC beam connection exhibited better seismic performance and can provide reference for engineering application.  相似文献   

14.
通过9根表层嵌入碳纤维增强塑料板条抗剪加固的钢筋混凝土梁和4根对比梁的静载试验,分析了构件的破坏形态、斜截面纤维应变分布特征及加固后极限承载力的影响因素。研究结果表明:嵌入式加固与外贴加固相比,可以明显地提高钢筋混凝土梁的抗剪承载力,并改变构件的变形性能。最后,在国内外研究资料的基础上,提出了加固后混凝土梁的受剪承载力计算公式,并对计算值与试验值进行了比较,结果吻合较好。  相似文献   

15.
INTRODUCTION Steel framed structures are widely used in in-dustrial and commercial buildings. According to thedifferent lateral load resisting system, the steel framescan be mainly divided into four kinds (Fig.1a): themoment-resisting frame (MRF), concentricallybraced frame (CBF), eccentrically braced frame(EBF), and knee bracing frame (KBF). Fig.1b shows the difference in the lateral per-formances of the above frames that have similarstructural parameters. Although the MRF is an e…  相似文献   

16.
为了更好地保护古建筑,采用试验方法研究了CFRP加固古建筑榫卯节点后的抗震性能.基于某古建筑实际尺寸,制作了1:8缩尺比例的木结构空间框架模型,并考虑梁柱连接为燕尾榫形式.进行了低周反复加载试验,包括3组未加固构架试验和2组CFRP加固试验.基于试验相关数据,获得了节点的弯矩-转角滞回曲线和骨架曲线,并对比分析了节点加...  相似文献   

17.
INTRODUCTION The aging or deterioration of existing R. C.(reinforced concrete) or P. C. (prestressed concrete)structures is one of the major problems that modernengineers have to face. If the flexural or shear strengthof R. C. or P. C. structures is not sufficient to maintaintheir service functions, strengthening of these struc-tures becomes necessary. To date, steel plates havebeen used to strengthen concrete members. Usingcomposite plates to strengthen R.C. or P.C. structures…  相似文献   

18.
This work is aimed at studying the strengthening of reinforced concrete (R. C.) beams using prestressed glass fiber-reinforced polymer (PGFRP). Carbon fiber-reinforced polymer (CFRP) has recently become popular for use as repair or rehabilitation material for deteriorated R. C. structures, but because CFRP material is very stiff, the difference in CFRP sheet and concrete material properties is not favorable for transferring the prestress from CFRP sheets to R. C. members. Glass fiber-reinforced polymer (GFRP) sheets with Modulus of Elasticity quite close to that of concrete was chosen in this study. The load-carrying capacities (ultimate loads) and the deflections of strengthened R. C. beams using GFRP and PGFRP sheets were tested and compared. T- and ⊥-shaped beams were used as the under-strengthened and over-strengthened beams. The GFRP sheets were prestressed to one-half their tensile capacities before being bonded to the T- and l-shaped R. C. beams. The prestressed tension in the PGFRP sheets caused cambers in the R. C. beams without cracks on the tensile faces. The PGFRP sheets also enhanced the load-carrying capacity. The test results indicated that T-shaped beams with GFRP sheets increased in load-carrying capacity by 55% while the same beams with PGFRP sheets could increase load-carrying capacity by 100%. The ⊥-shaped beams with GFRP sheets could increase load-carrying capacity by 97% while the same beams with PGFRP sheets could increase the loading-carrying capacity by 117%. Under the same external loads, beams with GFRP sheets underwent larger deflections than beams with PGFRP sheets. While GFRP sheets strengthen R. C. beams, PGFRP sheets decrease the beams' ductility, especially for the over-strengthened beams (⊥-shaped beams).  相似文献   

19.
为研究碳纤维布(CFRP)对加固后钢筋混凝土梁的抗弯疲劳性能的影响,进行了3根CFRP加固梁及1根对比梁的抗弯疲劳试验.研究了碳纤维布加固方式、构件使用荷载等参数对碳纤维布加固损伤钢筋混凝土吊车梁的抗弯疲劳性能影响.试验研究表明:采用碳纤维布加固后,构件裂缝的宽度减小50.2%~66%,发展速度也得到控制,钢筋应力减小24.1%~28.2%,构件的刚度提高14.9%~16.1%.依据试验结果,从现有规范中关于构件刚度计算方法出发,进行了CFRP加固钢筋混凝土吊车梁的疲劳刚度计算分析,该计算方法可用于吊车梁加固工程设计.最后给出了CFRP加固梁的疲劳设计的合理化建议.  相似文献   

20.
This paper presents the results of an experimental investigation on the response of pre-damaged reinforced concrete (RC) beam strengthened in shear using applied-epoxy unidirectional carbon fiber reinforced polymer (CFRP) sheet. The reasearch included four test rectangular simply supported RC beams in shear capacity. One is the control beam, two RC beams are damaged to a predetermined degree from ultimate shear capacity of the control beam, and the last beam is left without pre-damaged and then strengthened with using externally bonded carbon fiber reinforced polymer to upgrade their shear capacity. We focused on the damage degree to beams during strengthening, therefore, only the beams with side- bonded CFRPs strips and horizontal anchored strips were used. The results show the feasibility of using CFRPs to restore or increase the load-carrying capacity in the shear of damaged RC beams. The failure mode of all the CFRP-strengthened beams is debonding of CFRP vertical strips. Two prediction available models in ACI-440 and fib European code were compared with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号