首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
若二次函数f(x)=ax^2 bx c的定义域是闭区间[p,q],则可以将二次函数的系数a、b、c用闭区间上的三个函数值(一般用区间端点、中点函数值)来表示。再结合绝对值不等式性质定理的推论:|x1 x2 … xn|≤|x1| |x2| … |xn|,就可以解决一类有关绝对值不等式的证明问题。现举例说明如下:  相似文献   

2.
在闭区间上的二次函数的绝对值不等式的证明有一个通法 :将二次函数的系数用闭区间上的三个函数值 (一般用区间端点和中点的函数值 )来表示 ,然后借助于绝对值不等式来解决 .例 1 设a、b、c∈R ,f(x) =ax2 +bx +c(a≠ 0 ) .若 | f( 0 ) |≤ 1,|f( 1) |≤ 1,|f( - 1) |≤ 1,试证 :对任何x∈ [- 1,1] ,都有 |f(x) |≤ 54 .证明 :因f( 0 ) =c,f( 1) =a +b+c,f( - 1) =a-b +c,故解得a =f( 1) + f( - 1)2 - f( 0 ) ,b =f( 1) - f( - 1)2 ,c=f( 0 ) .∵  |x|≤ 1∴  | f(x) | =|ax2 +bx +c|=f( …  相似文献   

3.
二次函数在闭区间上的最值分为两种情况,一种是轴定区间动,另一种是轴动区间定,不论哪种情况,都可分为对称轴在区间左侧,在区间内,在区间右侧三种情况来分类讨论,下面利用数形结合给出y=ax2+bx+c(a≠0)在[m,n]上的最值.只讨论a>0的情形.  相似文献   

4.
本文就零值定理在在二次函数中的应用,谈一点我们的看法。零值定理:设f(x)是闭区间[a,b]上的连续函数且在区间两端点的数值f(a)、f(b)异号,那么一定有一点C(a相似文献   

5.
二次函数问题是近几年来高考的热点,很受命题者的青睐.含参的二次函数在闭区间上的最值问题是二次函数重要题型之一,本文就这种问题的解题策略作一介绍.解决含参的二次函数在闭区间上的最值问题,关键是确定二次函数图象的开口方向、对称轴及所给区间以及相互位置关系.其中二次函数图象的开口方向很容易由二次项系数的符号来确定,而对称轴与所给区间的相互位置关系的讨论往往成为解决这类问题的关键.此类问题包括以下四种情形:(1)轴定,区间定;(2)轴定,区间变;(3)轴变,区间定;(4)轴变,区间变.下面分别举例说明.例1(2002年上海高考题)己知函数(…  相似文献   

6.
二次函数在闭区间上的最值问题,尤其是含有参数的二次函数在闭区间上的最值问题是各级各类考试的热点.一般地,对于二次函数f(x)=a(x-h)~2+k(a>0)在区间[m,n]上的最值,有如下结论:(1)当h相似文献   

7.
在某个给定的闭区间上二次函数的最值,除了出现在顶点上,还有可能出现在端点上,尤其是二次函数的对称轴是变量时,最值的确定要分类讨论。一求解方法对于二次函数y=ax2+bx+c(a≠0). 1.定义域为R,当a>0时,此函数的最小值为(4a-b2)/4a;当  相似文献   

8.
<正>二次函数是高中生必须要掌握的几种基本初等函数之一,一般情况下考查的题目都属于中档偏易,但也有一类求带参数的二次函数在闭区间上的最值问题比较难,一般分为动轴定区间和定轴动区间两种情况。1.动轴定区间上的最值问题例1已知函数f(x)=x2+2ax+2。(1)求f(x)在[-5,5]上的最小值;(2)求f(x)在[-5,5]上的最大值。解析:(1)因为f(x)=x2+2ax+2的图  相似文献   

9.
二次函数闭区间上的最大值和最小值一般在对应图象的顶点或区间端点处取得.因此,关于对称轴与区间的相互位置关系的讨论往往成为解决二次函数在闭区间上的最值问题的关键,通常需要考察“一轴四点”,即对称轴、顶点、区间两端点和区间中点.  相似文献   

10.
近年来中考中,涉及二次函数的题目很多,在这些题目中往往需要先求出二次函数的解析式,才能顺利完成其余步骤,下面向同学们介绍几种二次函数的求解方法。一、一般式:y=ax2+bx+c已知二次函数图象上任意三点的坐标,通常设一般式y=ax2+bx+c,然后把三点的坐标分别代入解析式,得到关于a、b、c、的一个三元一次方法组,求出a、b、c的值,即可求出二次函数的解析式。例1设二次函数的图象过(1,-2),(-1,-6)和(2,3),求该函数解析式?解:设二次函数的解析式为y=ax2+bx+c,将(1,-2),(-1,-6)和(2,3)代入,得a+b+c=-2a-b+c=-64a+2b+c=3解得:a=1b=2c=-5∴二次函数…  相似文献   

11.
二次函数f(x)=ax~2+bx+c(a≠0)在闭区间[α、β]上的最值应用十分广泛。因而探讨它的求法无疑是十分必要的。一、闭区间[α、β]上二次函数最值的情况下面通过图象进行研究1.当a>0时,抛物线开口向上  相似文献   

12.
1 案例的呈现2005年天津市中考有一道代数综合题:例已知二次函数 y=ax~2+bx+c.(1)若 a=2,c=-3.且二次函数的图象经过点(-1,-2),求 b 的值;(2)若 a=2,6+c=-2,b>c,且二次函数的图象经过点(p,-2),求证:b≥0;(3)若 a+b+c=0,a>b>c,且二次函数的图象经过点(q,-a),试问当自变量 x=q+4时,二次函数y=ax~2+bx+c 所对应的函数值 y 是否大于0.并证明你的结论.本题的核心内容在第(3)问(第(1)、(2)问只是其  相似文献   

13.
二次函数 f(x)=ax~2+bx+c.(a≠0,x∈R)(1)是初等数学里最常见的函数,它的应用很广。本文将介绍二次函数的一个特性及其应用。 (一)二次函数的一个特性我们知道,二次函数 f(x)=ax~2+bx+c.(a≠0,x∈R)在任何一个闭区间[ξ,η]上连续,且在开区间(ξ,η)上可导(ξ∈R,η∈R,)。因此,微分中值定  相似文献   

14.
<正>一、与参数有关的区间上二次函数最值问题关于二次函数f(x)=ax2+bx+c(a≠0)在[m,n]上的最值问题,解答时可通过置放二次函数图象的对称轴或所给区间,截取相应区间的图象获得最值,主要类型有以下三种:1.区间确定,对称轴位置待定例1求函数f(x)=2x2+bx+c(a≠0)在[m,n]上的最值问题,解答时可通过置放二次函数图象的对称轴或所给区间,截取相应区间的图象获得最值,主要类型有以下三种:1.区间确定,对称轴位置待定例1求函数f(x)=2x2-2ax+1在[-1,1]上的最小值.  相似文献   

15.
<正>二次函数在闭区间上的最值问题在理论研究及实际教学中都表述得比较完善.但在现实解题教学过程中笔者发现二次函数在闭区间上的最值问题学生不易解决.因为二次函数的最值问题,首先要关注开口方向、顶点、对称轴,其次要注意所给区间上函数的单调性;如果含有参数,还要注意对称轴与区间的位置关系,借助数形结合,进行分类讨论.所以,二次函数的最值是高中数学的教学难点,也是高考的热点.  相似文献   

16.
函数在闭区间上的最值问题本质上是一个数学规划问题 .高中教材中讨论了二次函数在闭区间上的最值问题 ,现在导数进入了中学教材 ,使得对三次函数最值的讨论成为可能 .本文讨论三次函数 y( x) =x3+ ax2 +bx+ c在闭区间 [α,β]上的最值问题 .记导函数 y′( x) =3x2 + 2 ax+ b的判别式为 Δ.当Δ≤ 0时 ,y( x)没有极值点 ,是单调增函数 ,所以 y( x)在 [α,β]的端点处达到最大、最小值 .当Δ >0时 ,y′( x)有两个零点 ,记为 x1和 x2 ( x1 相似文献   

17.
对于一元二次方程,除了讨论根的性质符号外,往往还要求讨论它的根的分布范围。要求出一元二次方程的根落在某区间的内或外的充要条件,通常要借助于二次函数的图象.本文将对零值定理在二次函数中的应用作一些探讨. 零值定理:设f(x)是闭区间[a,b]上的连续函数,且f(a)f(b)<0,则必存在c∈(a,b),使得f(c)=0. 众所周知,一元二次函数f(x)=ax~2 bx c(不妨设a>0)是实数集上的连续函数,因此,我们可用零值定理研究它的性质.  相似文献   

18.
<正>求二次函数y=ax2+bx+c(a≠0)在指定区间[m,n]上的最值,只要分对称轴在区间内,还是区间外进行讨论,并总结出"轴定区间动"、"轴动区间定"两种含有字母参数的题型即可.但是在学习了导数内容后,函数的类型变得丰富了,且常含有字母参数,此时同学们就不知如何分类讨论了.究其原因,是  相似文献   

19.
<正>二次函数在闭区间上的最值求解,通常是利用配方法和数形结合法,先画出二次函数的图像(一般在草稿纸上作出大致图像),根据题中所给的区间观察图像的单调区间,再利用函数的单调性求得最值。而求二次函数在闭区间上的最值又有定轴定区间、动轴定区间、定轴动区间三种类  相似文献   

20.
<正>在近几年的高考题中,利用分类讨论法解一类与恒成立有关的求参问题屡次出现,此类求参问题有个共同的特征,即"在某区间上不等式恒成立,区间的端点或区间内的某一点使不等式对应的方程成立".笔者根据此类题目的特点,整理出了几类模型,供同仁参考.模型一函数f(x)中含参数r,且r∈U.在区间(a,b)上f(x)>0恒成立(或在区间[a,b)上f(x)≥0恒成立),且f(a)=0,则  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号