首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
我们知道,与椭圆x~2/a~2+y~2/b~2=1相切于(X_0y_0)点的切线方程是x_0x/a~2+y_0y/b~2=1 ①我们把直线y=kx+(m≠O) ②变形为 -ka~2x/m/a~2+b~2/m~y/b~2=1 ③如果直线②与椭圆也相切于(x_0,y_0)点,则①和③表示同一条直线,所以有 x_0=-ka~2/m,y_0=b~2/m (Ⅰ) 用同样的方法,可类似地求出圆x~2+y~2=r~2双曲线x~2/a~2-y~2/b~2=1和抛物线y~2=2px与  相似文献   

2.
平面上的椭圆、双曲线、抛物线的标准方程为x~2/a~2±y~2/b~2=1、y~2=2px。在其曲线上的点(x_0,y_0)处的切线方程可表示为x_0x/a~2±y_0y/b~2=1、y_0y=p(x x_0)的形式。这种形式与原曲线方程有明显的对应关系,便于记忆,并可以推广到平面上高次曲线。为了便于讨论,我们把平面直角坐标系中3次曲线方程的一般形式表示为  相似文献   

3.
文[1]、[2]、[3]分别给出了直线方程:x_0x y_0y=r~2,(x_0x)/a~2 (y_0y)/b~2=1,(x_0x)/a~2-(y_0y)/b~2=1的3种几何意义,笔者认为直线方程:y_0y=p(x_0 x)(p>0)也有类似的几何意义,而且它揭示了圆及二次曲线内在的一般规律.定理1:若点 P(x_0,y_0)在抛物线 y~2=  相似文献   

4.
文[2]作为文[1]的续文,在直线方程(x_0x)/(a~2) (y_0y)/b~2=1的三种几何意义探讨启发下,给出了直线方程(x_0x)/(a~2)-(y_0y)/(b~2)=1的几何意义.本文再给出直线方程y_0y=p(x x_0)的几何意义,以告对此类问题的探讨圆满解决.  相似文献   

5.
错在哪里     
1.湖北咸丰李永贵来稿题:过点B(0,-b)作椭圆x~2/a~2 y~2/b~2=1(a>b>0)的弦;求这些弦的最大值。解设M(x_0,y_0)为椭圆上任一点,由两点间的距离公式可得 |BM|~2=(x_0~2-0)~2 (y_0 b)~2=x_0~2 y_0~2 2by_0 b~2, ①因点M(x_0,y_0)在椭圆上,∴x_0~2=(a~2b~2-a~2y_0~2)/b~2,代入  相似文献   

6.
椭圆以某定点为中点的弦并非一定存在,那么,中点弦存在的充要条件是什么?有何应用,本文作下列探讨: 一中点弦方程的一种求法。设椭圆b~2x~2 a~2y~2-a~2b~2=0,(a>0,b>0)…(1) 及定点P_0(x_0,y_0),若以P_0为中点的弦存在,且两端点分别为A(x_1,y_1),B(x_2,y_2) 则:b~2x_1~2 a~2y_1~2-a~2b~2=0 b~2x_2~2 a~2y_2~2-a~2b~2=0 两式相减整理得: (y_1-y_2)/(x_1-x_2)=(x_1 x_2)/(y_1 y_2)·b~2/a~2 =-b~2/a~2·x_0/y_0 (x_1≠x_2) 即k=-(b~2x_0)/(a~2y_0),代入点斜式得中点弦方程:a~2y_0y b~2x_0x=a~2y_0~2 b~2x_0~2……(2) 如果x_1=x_2,那么y_0=0,中点弦方程为x=x_0仍包含在(2)中。  相似文献   

7.
文[1]定义了椭圆的切准点:椭圆(x~2)/(a~2)+(y~2)/(b~2)=1(a>b>0)上点M(x_0,y_0)(除长轴两顶点)处的切线l交右准线l_2:x=(a~2)/c于P,交左准线l_1:x=-(a~2)/c于Q,则点P,Q为椭圆的切准点.笔者  相似文献   

8.
每期一题     
题:若:a、b、c为正数,试求函数y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)的极小值。解法一复数法运用代数中学过的复数模不等式 |z_1|+|z_2|≥|z_1+z_2|。设 z_1=x+ai x_2=(c-x)+bi ∴|z_1|=(x~2+a~2)~(1/2) |z_2|=((c-x)~2+b~2)~(1/2) ∵|z_1|+|z_2|≥|z_1+z_2| ∴y=|z_1|+|z_2|≥|z_1+z_2| =|x+ai+c-x+bi| =|c+(a+b)i|=(c~2+(a+b)~2)~(1/2) ∴y_min=(c~2+(a+b)~2)~(1/2)。解法二代数法运用不等式(x_1~2+y_1~2)~(1/2)+(x_2~2+y_2~2)~(1/2)≥((x_1+x_2)~2+(y_1+y_2)~2)~(1/2)其中等号仅当x_1/x_2=y_1/y_2时成立。∴y=(x~2+a~2)~(1/2)+((c-x)~2+b~2)~(1/2)  相似文献   

9.
命题一则     
在平面直角坐标系中,椭圆的标准方程是x~2/a~2+y~2/b~2=1 (1)一般方程则为φ(x,y)(?)Ax~2+BXy+Cy~2+DX+Ey+F=0 , (2)其中判别式B~2-4ACO.命题 若P(x_1,y_1)是椭圆(1)的外点,则x_1~2/a~2+y_1~2/b~2>1;若P(x_1,y_1)是椭圆(1)的内点,则x_1~2/a~2+y_1~2/b~2<1,一般地,若P(m,n)是椭圆(2)的外点则φ(m,n)>0若P(m,n)是椭圆(2)的内点则φ(m,n)相似文献   

10.
一阶导数与二次曲线弦中点间存在着一种内在联系,这种联系为解决二次曲线中点弦一类问题开辟了一条较为简捷的路径.本文就以定理形式揭示这种联系并列举应用. 定理:椭圆x~2/a~2 y~2/b~2=1的以斜率为k的一组平行弦中点轨迹方程是x~2/a~2 yy_x~'/b~2=0(※)(|x|≤a,|y|≤b)其中y_x~'就是平行弦的斜率k,它等于直线(※)与椭圆交点处切线的斜率. 证明:设点P(x_0,y_0)是以k为斜率的弦P_1P_2的中点,点P_1(x_1,y_1),P_2(x_2,y_2)  相似文献   

11.
一、旋转式椭圆规的数学原理我们从椭圆轨迹上的点P(x,y)到椭圆中心的距离谈起: 设椭圆轨迹上一动点P(x,y)的轨迹方程为 x=acosθ, y=bsinθ,则动点P(x,y)到椭圆中心O(0,0)的距离d满足 d~2=(acosθ)~2 (bsinθ)~2.因a~2cos~2θ b~2sin~2θ=(a~2-b~2)cos~2θ b~2  相似文献   

12.
一条直线和一条圆锥曲线的位置可以有相交、相切或相离三种情况。下面给出在给定一条直线方程和一条圆锥曲线的方程的条件下,判定它们的位置关系的定理。定理一已知直线l:Ax+By+C=0和椭圆E:x~2/a~2+y~2/b~2=1,若a~2A~2+b~2B~2>C~2则l和E相交;若a~2A~2+b~2B~2=C~2则l和E相切:若 a~2A~2+b~2B~2相似文献   

13.
人教版试验教材数学第二册(上)§7.7,例2:已知圆的方程是x~2+y~2=r~2,求经过圆上一点M(x_0,y_0)的圆的切线方程。本例题求解方法很多(结果为x_0x+y_0y=r~2),在此不再赘述,下面从三个方面进行引申和探究,供赏析。引申一:若圆的方程是(x-a)~2+(y-b)~2=r~2,那么经过圆上一点M(x_0,y_0)的切线方程还是x_0x+y_0y=r~2吗?下面我们来探求过点M(x_0,y_0)的圆的切线方程。方法一:用例2的方法(利用点斜式方程求解),可求得过点M(x_0,y_0)的圆的切线方程为  相似文献   

14.
定理过双曲线上一点 P 作切线交渐近线于点A、B,则(1)PA=PB;(2)△OAB(O 为双曲线的中心)的面积为定值.证明:不妨设双曲线的方程为 x~2/a~2-y~2/b~2=1(a>0,b>0),渐近线为 y=±(b/a)x,P(x_0,y_0)为双曲线上任一点,则 AB 的方程为 xx_0/a~2-yy_0/b~2=1,与 y=±(b/a)x 联立,  相似文献   

15.
我们熟知,直线的点斜式方程 y-y_1=k(x-x_1)与参数方程x=x_1 tCosα y=y_1 tSinα(其中 tgα=k)对应,而园锥曲线x~2/a~2 y~2/b~2=1,x~2/a~2-y~2/b~2=1和 y~2=2px分别与参数方程 x=aCost y=bsint,x=aSect,y=btgt,和x=2pt~2 y=2pt 对应。在直线的参数方程x=x_1 tCosα y=y_1 tSinα中,参数 t 有简单明确的几何意义——t 是对应的动点 P(x,y)到定点 M(x_1,y_1)的有  相似文献   

16.
《平面解析几何》(必修)第62页例3有这样一个问题:“已知圆的方程 x~2 y~2=r~2,求经过圆上一点 M(x_0,y_0)的切线方程.”易知所求切线方程为x_0x y_0y=r~2,  相似文献   

17.
定义:连结椭圆上任意两点的线段叫弦.过椭圆中心的弦叫直径.类似地可定义双曲线的直径.如图1,平行于直径CD的弦的中点的轨迹AB和直径CD叫互为共轭直径.类似地可定义双曲线的共轭直径. 定理1 已知AB、CD为椭圆x~2/a~2 y~2/b~2=1的一对共轭直径,其斜率分别为k_(AB)、K_(CD),那么K_(AB)·K_(CD)=-b~2/a~2. 略证:如图1,设平行弦EF簇的斜率为k(即K_(CD)),则平行弦EF簇的方程为 y=kx t(t为参数).① 又椭圆方程为 x~2/a~2 y~2/b~2=1. ② ①代入②整理得 (a~2k~2 b~2)x~2 2a~2tkx a~2(t~2-b~2)=0. ③ 由韦达定理,得x_1 x_2=-(2a~2tk/a~2k~2 b~2). 设M(x′,y′)是EF的中点,则 x′=1/2(x_1 x_2)=-(a~2tk/a~2k~2 b~2) ④ 点M在EF上,则y′=kx′ t. ⑤ 由④、⑤消去参数t得 y′=-b~2/a~2k x′. ∵k_(AB)=k_(OM)=-(b~2/a~2k). ∴k_(AB)·k_(CD)=-(b~2/a~2k)·k=-(b~2/a~2). 推论1 AB是椭圆x~2/a~2 y~2/b~2=1的任意一条弦,P为AB的中点,O为椭圆的中心,则 K_(AB)·K_(OP)=-(b~2/a~2).  相似文献   

18.
例1 已知分别过抛物线 y~2=2px 上点 A(x_1,y_1),B(x_2,y_2)的两条切线相交于 P(x′,y′).求证:x′=(y_1y_2)/2p,y′=(y_1 y_2)/2.证明如图1,由文献[1]可知过 A,B 两点的切线方程为:l_1:y_1y=p(x x_1);l_2:y_2y=p(x x_2).又 P 在 l_1,l_2上,有y_1y′=p(x′ x_1); (1)y_2y′=p(x′ x_2). (2)式(1)-式(2)得(y_1-y_2)y′=p(x_1-x_2).又 x_1=y_1~2/2p,x_2=y_2~2/2p,代入上式整理得y′=1/2(y_1 y_2), (3)将式(3)代入式(1)得1/2y_1(y_1 y_2)=px′ py_1~2/2p,由此得 x′=y_1y_2/2p,所以  相似文献   

19.
众所周知,过二次曲线Ax~2+Cy~2+Dx+Ey+F=0 (g)上一点P_1(x_1,y_1)的切线方程为Ax_1x+Cy_1y+D((x_1+x)/2)+E((y_1+y)/2)+F=0(h)。这是一个将切点(曲线上的点)的坐标x_1、y_1与切线上的点(曲线外的点)的坐标x、y联系起来的公式。当已知切点P_1的坐标P_1(x_1,y_1)时,将x、y看作变量,则(h)为过P_1的切线上点的坐标满足的方程,即过P_1的切线方程。当已知曲线外一点P的坐标P(x,y)时,将x_1、y_1看作变量,则(h)  相似文献   

20.
正笔者在利用几何画板研究有心圆锥曲线的切线时发现一个简洁有趣的性质,现介绍如下:命题1自圆C_1:x~2+y~2=a~2+b~2上任一点P向椭圆C_2:x~2/a~2+y~2/b~2=1(a,b0)引两条切线,则这两条切线互相垂直.证明:设P点的坐标为(x_0,y_0),自这一点向椭圆C_2引的两切线分别为l_1和l_2.(1)当切线的斜率存在且不为0时,设过P的切线方程为y-y_0=k(x-x_0),由y-y_0=k(x-x_0),x~2/a~2+y~2/b~2=1得(b~2+k~2a~2)x~2+  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号