首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一、求简单复合函数单调区间定理:设函数u=g(x)的值域为N.1.若函数y=f(u)在N上为增函数,则u=g(x)的单调增(减)区间就是函数y=f[g(x)]的单调增(减)区间.2.若函数y=f(u)在N上为减函数,则u=g(x)的单调增(减)区间就是y=f[g(x)]的单调减(增)区间.本文根据上述定理归纳出一个比较容易的求复合函数单调区间的一般方法,其步骤是:(1)在y=f[g(z)](复合函数)中,换元即令u=g(x)(中间函数),则y=f(u)(原函数);(2)求出y=f(u)的单调区间N_i(i=1,2,…,n)并判定出增减;(3)求出使u=g(x)∈N_i的x范围M:(4)求  相似文献   

2.
在教学过程中,笔者发现学生在求解函数单调区间时出现了一系列的问题,本文中对于学生解题过程中出现的误区进行分析,并尝试提出一些解决办法。一、对函数单调区间定义理解的误区(一)对函数单调区间定义的理解误区函数单调区间的定义:若函数y=f(x)在某个区间是增函数(或减函数),就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调递增区间(或单调递减区间),此时就说函数y=f(x)是这一区间上的单调函数。  相似文献   

3.
《海南教育》2013,(2):98-99
<正>在教学过程中,笔者发现学生在求解函数单调区间时出现了一系列的问题,本文中对于学生解题过程中出现的误区进行分析,并尝试提出一些解决办法。一、对函数单调区间定义理解的误区(一)对函数单调区间定义的理解误区函数单调区间的定义:若函数y=f(x)在某个区间是增函数(或减函数),就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调递增区间(或单调递减区间),此时就说函数y=f(x)是这一区间上的单调函数。  相似文献   

4.
第一试 一、选择题(每小题6分,共36分) 1.给出下列命题: (1)若f(x)、g(x)在区间I上都是增函数,则f(g(x))在I上是增函数; (2)若f(x)、g(x)在区间I上都是减函数,则f(g(x))在I上是减函数; (3)若f(x)在区间I上是增函数,g(x)在区间I上是减函数,则f(g(x))在I上是增函数; (4)若f(x)在区间I上是增函数,g(x)在区间I上是减函数,则f(g(x))在I上是减函数. 其中,正确命题的个数为( ).  相似文献   

5.
引言本文只论及一元微分的应用,一共写了十六个方面.本期登载的是用导数研究函数的部分内容. 一函数的增减性定义设函数y=f(x)在区间(a,b)内有定义,x_1、x_2是区间(a,b)内的任意两点,当x_1f(x_2),那么y=f(x)就称为在区间(a,b)内的减函数.  相似文献   

6.
设函数f(x)定义在区间I上且x1,x2∈I,则①若函数f(x)在区间I上是单调增(或减)函数,则x1f(x2)).②若函数f(x)在区间I上是单调函数,则x1=x2f(x1)=f(x2).③若函数f(x)在区间I上是单调函数,则方程f(x)=0在区间I上至多有一个实数根.④若函数f(x)与g(x)的单调性相同,则在它们公共的定义域内,函数f(x) g(x)亦与它们的单调性相同.⑤复合函数y=f(u)(u=g(x))的单调性适合“同增异减”规律,即若f(x)与g(x)的单调性相同(或相异),则y=f[g(x)]为增(或减)函数.⑥互为反函数的两个函数在各自的定义域内具有相同的单调性.运用…  相似文献   

7.
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的)1.若lga+lgb=0(其中a≠1,b≠1),则函数f(x)=ax与g(x)=bx的图象()(A)关于直线y=x对称(B)关于原点对称(C)关于x轴对称(D)关于y轴对称2.设函数f(x)是定义在R上的减函数,F(x)=f(x)-f(-x),那么F-1(x)必为()(A)增函数且为奇函数(B)增函数且为偶函数(C)减函数且为奇函数(D)减函数且为偶函数3.若函数f(x)是定义在区间[-6,6]上的偶函数,且f(3)>f(1),则下列各式一定成立的是()(A)f(0)f(2)(C)f(-1)f(6)4.设函数y=f(x)定…  相似文献   

8.
1.有关结论新教材第三册中给出了函数的单凋性的充分条件:一般地,设函数y=f(x)在某个区间有导数,如果在这个区间内y′>0,那么f(x)为这个区间内的增函数;如果在这个区间内y′<0,那么f(x)为这个区间内的减函数.利用这一结论求复杂函数的单调区间十分方便,但要解决单调性的逆向问题,利用单调性的充要条件更加方便.  相似文献   

9.
设函数f(x)、g(x)的公共定义域为D,则有以下结论: 1.若f(x)和g(x)在D内都是增函数,则f(x)+g(x)在D内也是增函数; 2.若f(x)和g(x)在D内都是减函数,则f(x)+g(x)在D内也是减函数; 3.若f(x)在D内是增函数,g(x)在D内是减函数,则f(x)-g(x)在D内是增函数;  相似文献   

10.
求复合函数y=f[g(x)]的单调性,可按以下步骤:①合理地分解成两个基本初等函数 y=f(u)、u=g(x);②分别求出各个函数的定义域;③分别确定分解成的两个基本初等函数的单调区间;④若两个基本初等函数在对应区间上的单调性是同增或同减,则y=f[g(x)]为增函数.  相似文献   

11.
函数y=Asin(ωx+φ)是课本上研究的一个重点.高考命题时,也常以此函数为背景编制高考题,常见形式有下述几种: 1.单调性,单调区间例1 函数f(x)=Msin(ωx=φ)(ω>0)在区间[a,b]上是增函数,且f(a)=-M,f(b)=M,则函数g(x)=Mcos(ωx+φ)在[a,b]上( ) (A)是增函数. (B)是减函数. (C)可以取得最大值M.  相似文献   

12.
<正>知识点:导数与函数的单调性(1)函数单调性的判定方法:设函数y=f(x)在某个区间内可导,如果f'(x)>0,则y=f(x)在该区间为增函数;如果f'(x)<0,则y=f(x)在该区间为减函数。(2)函数单调性问题包括:(1)求函数的单调区间,常常通过求导,转化为解方程或不等式,常用到分类讨论思想;(2)利用单调性证明不等式或比较大小,常用构造函数法。一、求解含参函数的单调区间  相似文献   

13.
y=f[g(x)]型函数可以看作南两个函数y=f(u)和u=g(x)复合而成,一般称其为复合函数。其中y=f(u)为外函数,u=g(x)为内函数。若内、外函数的增减性相同,则原复合函数为增函数;相反则为减函数,即复合函数,单调性遵从同增异减的原则。在做题过程中,  相似文献   

14.
付怀军 《考试周刊》2013,(72):43-43
<正>考查复合函数f=f(g(x))的单调性.设单调函数y=f(x)为外层函数,y=g(x)为内层函数,(1)若y=f(x)增,y=g(x)增,则y=f(g(x))增.(2)若y=f(x)增,y=g(x)减,则y=f(g(x))减.(3)若y=f(x)减,y=g(x)减,则y=f(g(x))增.(4)若y=f(x)减,y=g(x)增,则y=f(g(x))减.结论:同增异减.  相似文献   

15.
新教材中对函数的单调性是这样描述的:一般地,设函数y=f(x)在某个区间内可导, 如果f'(x)>O,则f(x)为增函数; 如果f'(x)相似文献   

16.
<正>先分析学生对2006两道高考题的错解.例1(2006年天津高考题)已知函数y=f(x)的图象与函数y=ax(a>0且a≠1)的图象关于直线y=x对称,记g(x)=f(x)[f(x)+f(2)-1],若g(x)在区间12,2上是增函数,则实数a的取值范围是()  相似文献   

17.
复合函数的单调性问题是学习的难点,是大多数学生难于着手和容易出错的问题。下面谈谈如何讨论复合函数单调性问题。如果u=g(x)在区间M上有定义,且u∈N,y=f(u)在区间N上有定义,则把y=f(g(x))叫由u=g(x)和y=f(u)复合而成的  相似文献   

18.
设y=f(x)为可导函数。①在某个区间内,如果f(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数,反之亦然。②函数f(x)在某点取得极值的充要条件是该点的导数为零且该点两侧的导数异号。③函数f(x)在点x_0处的导数f′(x_0)是曲线y=f(x)在点(x_0,f(x_0))处切线的斜率。运用上述性质可解决下面几类问题。  相似文献   

19.
题目 (2005年,辽宁,理科第22题)函数 y=f(x)在区间(0,+∞)内可导,导函数 f′(x)是减函数,且 f′(x)>0.设 x_0∈(0,+∞),y=kx+m 是曲线y=f(x)在点(x_0,f(x_0))处的切线的方程,并设函数g(x)=kx+m.(Ⅰ)用 x_0、f(x_0)、f′(x_0)表示m;(Ⅱ)证明:当 x_0∈(0,+∞)时,g(x)≥f(x);  相似文献   

20.
正1."单调性概念理解"的严谨性缺失书本定义:设定义在某区间上的函数y=f(x),如果f'(x)0,那么函数y=f(x)在这个区间内单调递增;如果f'(x)0,那么函数y=f(x)在这个区间内单调递减.理解这正是我们同学用来解决求函数单调区间的依据,但同学们往往忽略了这只是函数在这个区间上单调递增或递减的一个充分条件,而并非必要条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号