首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
《Journal of The Franklin Institute》2019,356(17):10335-10354
This paper is devoted to investigate the designs of the event-based distributed state estimation and fault detection of the nonlinear stochastic systems over wireless sensor networks (WSNs). The nonlinear stochastic systems as well as the filters corresponding to the multiple sensors are represented by interval type-2 Takagi–Sugeno (T–S) fuzzy models. (1) A new type of fuzzy distributed filters based on event-triggered mechanism is established corresponding to the nodes of the WSN. (2) The overall stability and performance, that is mean-square asymptotic stability in H sense, of the event-driven fault detection system is analyzed based on Lyapunov stability theory. (3) New techniques are developed to cope with the problem of parametric matrix decoupling for solving the distributed filter gains. (4) Finally, the desired event-based distributed filter matrices are designed subject to the numbers of the fuzzy rules and a series of matrix inequalities. A simulation case is detailed to show the effectiveness of the presented event-based distributed fault detection filtering scheme.  相似文献   

2.
This paper addresses the problem of robust integrated fault estimation (FE) and fault-tolerant control (FTC) for a class of discrete-time networked Takagi–Sugeno (T–S) fuzzy systems with two-channel event-triggered schemes, input quantization and incomplete measurements. The incomplete information under consideration includes randomly occurring sensor saturation and randomly occurring quantization. In order to save the limited networked resources, this paper firstly proposed a novel dynamic event-triggered scheme on the sensor side and a static one on the controller side. Secondly, an event-triggered FE observer for the T–S fuzzy model is designed to estimate actuator faults and system states, simultaneously. Then, a specified discrete sliding surface in the state-estimation space is constructed. By using time-delay analysis technique and considering the effects of event-triggered scheme, quantization, networked conditions, actuator fault and external disturbance, the sliding mode dynamics and error dynamics are unified into a new networked time-delay model. Based on this model, sufficient conditions are established such that the resulting augmented fuzzy system is stochastically stable with a prescribed H performance level with a single-step linear matrix inequality (LMI) formulation. Furthermore, an observer-based sliding mode controller for reaching motion is synthesized to guarantee the reachability of the sliding surface. Finally, a single-link flexible manipulator example is present to illustrate the effectiveness of the proposed method.  相似文献   

3.
This paper is concerned with the network-based H fuzzy filtering for non-linear systems with parameter uncertainties under a novel adaptive discrete event-triggered communication scheme (DETCS). Based on interval type-2 (IT2) Takagi–Sugeno (T–S) fuzzy model, the non-linear systems with parameter uncertainties are represented as a class of IT2 T–S fuzzy systems. In the design process, a novel adaptive DETCS is proposed to reduce the usage of system resources and adapt the variation of plant output, and a novel networked IT2 T–S fuzzy filter is applied to improve the flexibility of filter design. By employing the time-delay systems modeling method, the filtering-error-system is modeled as a class of interval time-varying delayed IT2 T–S fuzzy systems with asynchronously and imperfectly matched membership functions, and further conditionally expressed as a favorable form. Then, some relaxed stability criteria are established to determine that this class of delayed IT2 T–S fuzzy systems is asymptotically stable with a prescribed H disturbance attenuation performance. Also, the co-design of parameter matrices of adaptive DETCS and filter is implemented. Finally, two numerical examples are provided to demonstrate the effectiveness of the proposed method.  相似文献   

4.
This paper is concerned with the event-based weighted residual generator design via non-parallel distribution compensation (PDC) scheme for fault diagnosis in discrete-time T–S fuzzy systems, under consideration of the imperfect premise matching membership functions. An event-triggered mechanism is firstly introduced to save communication resources, which leads to the premise variables of the system and observer to be asynchronous. Then, a fuzzy diagnostic observer with mismatched premise variables is designed to estimate the unmeasurable states of the system. Moreover, by using non-PDC method, a diagnostic observer-based weighted residual generator is established to improve the fault detection (FD) performance by using the information provided by each local system, in which the membership functions structure of the diagnostic observer and residual generator need not to be the same as the systems, and the L/L2 and L FD scheme is used to optimize the FD performance. Finally, two simulation results are provided to show the efficiency of the proposed non-PDC method.  相似文献   

5.
This paper is concerned with the reliable event-triggered H output control of nonlinear systems with actuator faults. A dynamic triggering scheme depending on system outputs is implemented to reduce the amount of communication transmissions, which is different from existing constant triggering thresholds. The parameters of actuator faults are estimated via observer state. To compensate for the fault effects on systems, the reliable controller parameters are adjusted along with the obtained estimations. By using some technical lemmas, new sufficient conditions for the closed-loop system to be asymptotically stable with prescribed H performance are formed in linear matrix inequalities. Lastly, simulations are implemented to demonstrate the validity of the proposed method.  相似文献   

6.
This paper investigates the problem of event-triggered filter design for nonlinear networked control systems (NCSs) in the framework of interval type-2 (IT2) fuzzy systems. A novel IT2 fuzzy filter for ensuring asymptotic stability and H performance of filtering error system is proposed, where the premise variables are different from those of the fuzzy model. Attention is focused on solving the problem of event-triggered filter design subject to parameter uncertainties, data quantization, and communication delay in a unified frame. It is shown that the proposed event-triggered filter design communication mechanism for IT2 fuzzy NCSs has the advantage of the existing event-triggered approaches to reduce the utilization of limited network resources and provides flexibility in balancing the tracking error and the utilization of network resources. Finally, simulation example is given to validate the advantages of the presented results.  相似文献   

7.
Robust fault detection for a class of nonlinear time-delay systems   总被引:1,自引:0,他引:1  
In this paper, the robust fault detection filter (RFDF) design problems are studied for nonlinear time-delay systems with unknown inputs. Firstly, a reference residual model is introduced to formulate the robust fault detection filter design problem as an H model-matching problem. Then appropriate input/output selection matrices are introduced to extend a performance index to the time-delay systems in time domain. The reference residual model designed according to the performance index is an optimal residual generator, which takes into account the robustness against disturbances and sensitivity to faults simultaneously. Applying robust H optimization control technique, the existence conditions of the robust fault detection filter for nonlinear time-delay systems with unknown inputs are presented in terms of linear matrix inequality (LMI) formulation, independently of time delay. An illustrative design example is used to demonstrate the validity and applicability of the proposed approach.  相似文献   

8.
This paper is concerned with the event-based fault detection for the networked systems with communication delay and nonlinear perturbation. We propose an event-triggered scheme, which has some advantages over existing ones. The sensor data is transmitted only when the specified event condition involving the sampled measurements of the plant is violated. An event-based fault detection model is firstly constructed by taking the effect of event-triggered scheme and the network transmission delay into consideration. The main purpose of this paper is to design an event-based fault detection filter such that, for all unknown input, communication delay and nonlinear perturbation, the error between the residual signal and the fault signal is made as small as possible. Sufficient conditions for the existence of the desired fault detection filter are established in terms of linear matrix inequalities. Based on these conditions, the explicit expression is given for the designed fault detection filter parameters. A numerical example is employed to illustrate the advantage of the introduced event-triggered scheme and the effectiveness of the proposed method.  相似文献   

9.
This paper is concerned with integrated event-triggered fault estimation (FE) and sliding mode fault-tolerant control (FTC) for a class of discrete-time Lipschtiz nonlinear networked control systems (NCSs) subject to actuator fault and disturbance. First, an event-triggered fault/state observer is designed to estimate the system state and actuator fault simultaneously. And then, a discrete-time sliding surface is constructed in state-estimation space. By the use of a reformulated Lipschitz property and delay system analysis method, the sliding mode dynamics and state/fault error dynamics are converted into a unified linear parameter varying (LPV) networked system model by taking into account the event-triggered scheme, actuator fault, external disturbance and network-induced delay. Based on this model and with the aid of Lyapunov–Krasovskii functional method, a delay-dependent sufficient condition is derived to guarantee the stability of the resulting closed-loop system with prescribed H performance. Furthermore, an observed-based sliding mode FTC law is synthesized to make sure the reachability of the sliding surface. Finally, simulation results are conducted to verify the effectiveness of the proposed method.  相似文献   

10.
《Journal of The Franklin Institute》2019,356(18):11561-11580
This paper addresses the robust H filter design problem for a class of uncertain fuzzy neutral stochastic system with time-delay through Takagi–Sugeno (T–S) fuzzy model. By constructing an augmented Lyapunov–Krasovskii functional, some novel delay-dependent stability criteria for uncertain fuzzy neutral stochastic system with time varying delay are obtained in terms of linear matrix inequalities. By using the integral inequality in the neutral stochastic setting combined with delay decomposition approach, the H fuzzy filter is designed to guarantee the corresponding filtering error systems robustly asymptotically stable with a specified H performance index. At last, two numerical examples are presented to show the less conservatism than the previous results.  相似文献   

11.
This paper studies networked H filtering for Takagi–Sugeno fuzzy systems with multi-output multi-sensor asynchronous sampling. Different output variables in a dynamic system are sampled by multiple sensors with different sampling rates. To estimate the signals of such a system, a continuous multi-rate sampled-data fusion method is proposed to design a novel networked filter. By considering a class of decentralized event-triggered transmission schemes, multi-channel network-induced delays, and the updating modes of the MOMR sampled-data, a networked jumping fuzzy filter is proposed to estimate system signals based on the transmitted multi-rate sampled-data of fuzzy system and the multi-rate sampled states of filter, and the jumping among filter modes is governed by a Markov process which depends on the arrival times of sampled output sub-vectors. To deal with asynchronous membership functions, the networked fuzzy filtering system is modeled as an uncertain fuzzy stochastic system with membership function deviation bounds. Based on stability and H performance analysis, several membership-function-dependent conditions are presented to co-design the event-triggered transmission schemes and the fuzzy filter such that the filtering error system is robustly mean-square exponentially stable with a prescribed H attenuation level. Finally, the improvement in estimation performance and comparison with the existing filtering methods are discussed through simulation examples.  相似文献   

12.
This paper investigates the mixed H and passive control problem for a class of nonlinear switched systems based on a hybrid control strategy. To solve this problem, firstly, using the Takagi–Sugeno (T–S) fuzzy model to approximate every nonlinear subsystem, the nonlinear switched systems are modeled as the switched T–S fuzzy systems. Secondly, the hybrid controllers are used to stabilize the switched T–S fuzzy systems. The hybrid controllers consist of dynamic output-feedback controllers for every subsystem and state updating controllers at the switching instant. Thirdly, a new performance index is proposed for switched systems. This new performance index can be viewed as the mixed weighted H and passivity performance. Based on this new performance index, the weighted H control problem and the passive control problem for switched T–S fuzzy systems via the hybrid control strategy are solved in a unified framework. Together the multiple Lyapunov functions (MLFs) approach with the average dwell time (ADT) technique, new design conditions for the hybrid controllers are obtained. Under these conditions, the closed-loop switched T–S fuzzy systems are globally uniformly asymptotically stable with a prescribed mixed H and passivity performance index. Moreover, the desired hybrid controllers can be constructed by solving a set of linear matrix inequalities (LMIs). Finally, the effectiveness of the obtained results is illustrated by a numerical example.  相似文献   

13.
In this paper, the event-triggered non-fragile H fault detection filter is designed for a class of discrete-time nonlinear systems subject to time-varying delays and channel fadings. The Lth Rice fading model is utilized to reflect the actual received measurement signals, and its channel coefficients own arbitrary probability density functions on interval [0,1]. The event-based filter is constructed to reduce unnecessary data transmissions in the communication channel, which only updates the measurement signal to the filter when the prespecified “event” is triggered. Multiplicative gain variations are utilized to describe the phenomenon of parameter variations in actual implementation of the filter. Based on Lyapunov stability theory, stochastic analysis technology along with linear matrix inequalities (LMIs) skills, sufficient conditions for the existence of the non-fragile fault detection filter are obtained which make the filtering error system stochastically stable and satisfy the H constraint. The gains of the filter can be calculated out by solving the feasible solution to a certain LMI. A simulation example is given to show the effectiveness of the proposed method.  相似文献   

14.
This paper studies the cooperative adaptive dual-condition event-triggered tracking control problem for the uncertain nonlinear nonstrict feedback multi-agent systems with nonlinear faults and unknown disturbances. Under the framework of backstepping technology, a new threshold update method is designed for the state event-triggered mechanism. At the same time, we develop a novel distributed dual-condition event-triggered strategy that combined the fixed threshold triggered mechanism acted on the controller with the new event-triggered mechanism, which can better reduce the waste of communication bandwidth. To deal with the algebraic loop problem caused by the non-affine nonlinear fault, the Butterworth low-pass filter is introduced. At the same time, the unknown function problems are solved by the neural network technology. All signals of the system are semiglobally uniformly ultimately bounded and the tracking performance is achieved, which proved by the Lyapunov stability theorem. Finally, the results of the simulation test the efficiency of the proposed control scheme.  相似文献   

15.
This paper is concerned with the problem of adaptive event-triggered (AET) based optimal fuzzy controller design for nonlinear networked control systems (NCSs) characterized by Takagi–Sugeno (T–S) fuzzy models. An improved AET communication scheme with a memory adaptive rule is proposed to enhance the utilization of the state response vertex data. Different from the existing ET based results, the improved AET scheme can save more communication resources and acquire better system performance. The sufficient criteria of performance analysis and controller design are presented for the closed-loop control system subject to mismatched membership functions (MFs) and AET scheme. And then, a new MFs online learning algorithm on the basis of the gradient descent approach is employed to optimize the MFs of fuzzy controller and obtain optimal fuzzy controller for further improving system performance. Finally, two simulation examples are presented to verify the advantage and effectiveness of the provided controller design technique.  相似文献   

16.
This paper is concerned with the problem of event-triggered dynamic output-feedback H control for networked control system with sensor and actuator saturations. The event-triggered scheme combined with sensor saturation is first introduced to judge whether the newly sampled signal should be transmitted to the dynamic output-feedback controller or not. Under this scheme, the concurrent closed-loop system is first modeled as a control system with an interval time-varying delay and nonlinear items. Through constructing the Lyapunov–Krasovskii functional and employing linear matrix inequality approach, sufficient conditions for H asymptotical stability are derived for the networked control system; furthermore, under the above stability condition, a dynamic output-feedback controller and the corresponding event-triggered parameters are co-designed through linear matrix inequality approach. Lastly, a numerical example is employed to prove the practical utility of this method.  相似文献   

17.
In this paper, the problem of asynchronous H filtering for singular Markov jump systems with redundant channels under the event-triggered scheme is studied. In order to save the resource of bandwidth limited network and improve quality of data transmission, we utilize event-triggered scheme and employ redundant channels. The redundant channels are modeled as two mutually independent Bernoulli distributed random variables. To formulate the asynchronization phenomena between the system modes and the filter modes, the hidden Markov model is proposed so that the filtering error system has become a singular hidden Markov jump system. The criterion of regular, causal and stochastically stable with a certain H performance for the filtering error system has been obtained. The co-design of asynchronous filter and the event-triggered scheme is proposed in terms of a group of feasible linear matrix inequalities. Two examples are given to show the effectiveness of the proposed method.  相似文献   

18.
The problem of event-based H filtering for discrete-time Markov jump system with network-induced delay is investigated in this paper. For different jumping modes, different event-triggered communication schemes are constructed to choose which output signals should be transmitted. Through the analysis of network-induced delay’s intervals, the discrete-time system, the event-triggered scheme and network-induced delay are unified into a discrete-time Markov jump filter error system with time-delay. Based on time-delay system analysis method, criteria are derived to guarantee the discrete-time Markov jump error system stochastically stable with an H norm bound. The correspondent filter and the event-based parameters are also given. A numerical example is given to show that the proposed filter design techniques are effective and event-triggered communication scheme can save limited network resources greatly.  相似文献   

19.
The H filtering problem for distributed parameter systems with stochastic switching topology is investigated in this paper based on event-triggered control scheme. The switching topology which subjects to a Markovian chain is considered in filter design because of the communication uncertainty of practical networks. An event-triggered mechanism as a sampling scheme is developed aiming at the benefit of reducing the computation load or saving the limited network resources. Based on some novel integral inequalities, the improved delayed method is proposed for the H filtering control problem with event-triggered scheme. Moreover, by employing stochastic stability theory, filters with Markovian jump parameters are designed to guarantee that the stochastically mean square stability and H performance of the underlying error system. Finally, in order to illustrate the applicability of the obtained results, numerical examples are presented.  相似文献   

20.
The tracking problem of the fractional-order nonlinear systems is assessed by extending new event-triggered control designs. The considered dynamics are accompanied by the uncertain strict-feedback form, unknown actuator faults and unknown disturbances. By using the neural networks and the fault compensation method, two adaptive fault compensation event-triggered schemes are designed. Unlike the available control designs, two static and dynamic event-triggered strategies are proposed for the nonlinear fractional-order systems, in a sense that the minimum/average time-interval between two successive events can be prolonged in the dynamic event-triggered approach. Besides, it is proven that the Zeno phenomenon is strictly avoided. Finally, the simulation results prove the effectiveness of the presented control methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号