首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
含参的一元二次不等式恒成立问题是高中阶段最简单最常见的恒成立问题,它具有一元二次(不等式、方程和二次函数)的最基本特点,又是研究恒成立问题的最典型的例子.下面通过一个题组来看在新课标条件下,此类题目又有什么新的特点.【题组】(1)对任意x∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则a的取值范围是.(2)对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值恒大于零,则x的取值范围是.(3)对任意x∈[-1,1],函数f(x)=x2+(a-4)x+4-2a+a2的值恒大于零,则a的取值范围是.(4)对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a+a2的值恒大于零,则x的取值范围是.解决问题的基本方法应该是利用二次函数的判别式,根与系数的关系和对称性,通过对其图像位置的讨论得到参数满足的关系式.例如题(1):函数f(x)=x2+(a-4)x+4-2a的对称轴为x=-a-24=42-a.①当42-a<-1,即a>6时,f(x)的值恒大于零,等价于f(-1)=1+(a-4)×(-1)+4-2a>0,解得a<3,故有a∈.②当-1≤4-2a≤1,即2≤a...  相似文献   

2.
不等式是高中数学的重要内容之一,而含参不等式的恒成立问题,既是教学中的一个难点,又是近几年高考的一个热点,下面结合实例,介绍这类问题的几种求解策略.△利用判别式法直接求解把不等式转化为一元二次不等式,利用ax2+bx+c>0(a>0)的解集为R的充要条件是驻<0,可以求解“在实数集R上恒成立”这一类问题.例1不等式24xx2+2+26kxx++3k<1对x∈R恒成立,求实数k的取值范围.解:因为4x2+6x+3=4(x+43)2+43>0,所以原不等式等价于2x2+2kx+k<4x2+6x+3,即2x2+(6-2k)x+(3-k)>0对x∈R恒成立.∴驻=(6-2k)2-8(3-k)<0,解得1相似文献   

3.
1.概念模糊 ,混淆不清例 1 若 x3 + 2 x2 =- x x+ 2 ,则 x的取值范围是(   )。(A) x<0 ;(B) x≥ - 2 ;(C) - 2≤ x≤ 0 ;(D) - 2 相似文献   

4.
一、忽略区间端点致误例1已知关于x的不等式ax-5x2-a<0的解集为M,若3∈M且5M,求实数a的取值范围.错解由3∈M且5M得3a-59-a<0,且5a-525-a≥0.这等价于不等式组(a-53)(a-9)>0,(a-1)(a-25)≤0且a≠25 解得a∈犤1,53)∪(9,25).剖析因为当a=25时,x=5恰好不是25x-5x2-25<0的解,即5M,此时却仍有3∈M.所以要找回a=25这个特殊的区间端点值,故a∈犤1,53)∪(9,25犦为所求.二、忽略观察图象致误例2已知logax+3logxa-logxy=3,设x=at(a>1),试用a、t表示y,并求a=16时y的取值范围.错解∵x>0且x≠1,由x=at(a>1)得t=logax(t∈R且t≠0).由换底公式得logax…  相似文献   

5.
含绝对值的不等式常规处理方法较多,现点击如下,供参考. 一、直接运用绝对值意义由x“一2{x{一15>0得(lx即(Ix})“一214一5)({!一15>0}十3)>0,【例1】解不等式}一共{>一李下. !工,-1!工-rl点击:易知当,平不)o时, X寸~1 Xx+1所以}xl一5>O,即x>5或x<一5,原不等式解集为(一co,一5)U(5,+co)四、平方升维t例4】解关于x的不等式一拜一{>一拜一X州卜1!X十1·(x+l)<0,陪器1<‘·点击:显然}忠}-{a十x}11+ax, 故一1相似文献   

6.
例1设A=狖x|x2+4x=0狚,B=狖x|x2+2(a+1)x+a2-1=0狚.设A∩B=B,求实数a的值.错解由A∩B=B知AB,而A=狖0,-4狚,故0B,有a=±1,-4B.∴a=1或a=7.∴a=±1或a=7.分析错解求出a的值后,没有检验是否符合题意,且没有考虑到B=也是AB的一种情况.应分类讨论:若B≠,求出并验证a的值:(1)当a=1时,B=狖x|x2+4x=0狚=A;(2)当a=-1时,B=狖0狚A;(3)当a=7时,B=狖x|x2+16x+48=0狚=狖-12,-4狚A.若B=,则方程x2+2(a+1)x+a2-1=0无实数解,有Δ=4(a+1)2-4(a2-1)<0.解得a<-1.综合得:a≤-1或a=1.例2已知对任意实数x,不等式(a2-1)x2+(a-1)x-4<0恒成立,则实数a…  相似文献   

7.
导数是高中数学新教材引入的新内容 ,它为函数的研究开辟了新途径 ,从而成为高考的新热点 .下面举例说明 ,希望能够引起重视 .【例 1】  ( 2 0 0 3年高考题 )设a>0 ,求函数 f(x) =x-ln(x+a) (x∈ ( 0 ,+∞ ) )的单调区间 .解析 :求导得 f′(x) =12x -1x +a(x >0 ) .据题设 ,a >0 ,x >0 ,于是f′(x) >0 x2 +( 2a -4 )x+a2 >0 ,f′(x) <0 x2 +( 2a-4 )x +a2 <0 .因二次三项式x2 +( 2a -4 )x+a2 的判别式Δ =( 2a -4 ) 2 -4a2 =16( 1-a) ,∴ ( 1)当a >1时 ,对所有x >0 ,有x2 +( 2a -4 )x+a2 >0 ,即 f′(x) >0 ,此时 f(x)在 ( 0 ,+∞ )内单调…  相似文献   

8.
一、求根法用分解因式法表示出一元二次方程的两个解,再利用约数的特性及根据题意解决此类问题·例1已知方程a2x2-(4a2-5a)x+3a2-9a+6=0(a为非负整数)至少有一个整数根,那么a=·解:原方程变形,得[ax-(3a-3)][ax-(a-2)]=0,所以ax=3a-3或ax=a-2·因为a为非负整数,所以x1=3aa-3=3-3a,x2=a-a2=1-2a·当x1为整数时a为3的正约数,所以a=1或3;当x2为整数时a为2的正约数,所以a=1或2·所以a=1或2或3·二、判别式法当一元二次方程有整数根时,首先必须确定整系数和判别式必为完全平方数,然后进一步验证·例2设m为自然数,且1相似文献   

9.
恒成立不等式问题是高考、竞赛中一类常见的题型,综合性强、覆盖面广、灵活性大,令不少同学望题生畏.下面通过例题介绍解这类问题的六种常用方法,供大家参考.一、判别式法例1 若不等式2x2+(2x+1)lgm4x2+6x+3<1对任何实数x成立,求实数m的取值范围.解:∵4x2+6x+3=4(x+34)2+34>0,∴原不等式等价于不等式2x2+(2x+1)lgm<4x2+6x+3,整理得,2x2+(6-2lgm)x+3-lgm>0(*)由题意知,不等式(*)对任意实数x恒成立,∴判别式Δ=(6-2lgm)2-8(3-lgm)<0,∴10(a>0)的解集…  相似文献   

10.
如何确定恒成立或有解的不等式中参数的范围是一个难点 ,如果能将参数分离出来 ,再运用有关的函数方程等知识可以较好解决 .下面分情况说明 .一、a 0在 | x|≤ 2时恒成立 ,求 m的范围 .解 :原不等式等价于 ( x2 - x + 1) m 0 ,m f ( x…  相似文献   

11.
贵刊 2 0 0 0年第 10期《运用数学思想方法解含参不等式》一文中 ,例 3的解答是错误的 ,现将“例 3”及“解答”与“评注”抄录如下 :例 3 若 a∈ [-1,3 ] ,解不等式 x2 -ax>3 x -2 a +1解 :原不等式变形为 ( 2 -x) a +x2 -3 x-1>0构造函数 f ( a) =( 2 -x) a +x2 -3 x -1,当 x =2时 ,不等式显然不成立 .由 a∈ [-1,3 ] ,且 f ( a) >0 ,知f ( -1) =x2 -2 x -3 >0f ( 3 ) =x2 -6x +5 >0解之得 x >5或 x <-1.评注 :本例以辩证转化思想为指导 ,把参变元 a视为主元 ,将变元 x看成常量 ,构造关于参数的一次函数 ,利用单调性求解 ,此法极其巧思 .…  相似文献   

12.
(1 )首先从几个简单的特例来观察 ,分别令 (a ,b) =(2 ,2 ) ,(2 ,3 ) ,32 ,2 ,(3 ,4) ,得出 a2b-1 +b2a-1 之值分别为 8,1 1 ,414 ,1 1 .因此猜测当a =2 ,b=2时 ,a2b -1 +b2a -1 =8可能是最小值 . (2 )由不等式x2 +y2 ≥ 2xy,或x +y≥2xy(x≥ 0 ,y≥ 0 )可得当a >1 ,且b>1时 ,a2b-1 +b2a-1 ≥ 2 a2b-1 · b2a-1 =2 aa-1bb-1 .( )又任一正实数x ,因为x2 -4x +4=(x-2 ) 2 ≥ 0 ,所以x2 ≥ 4(x -1 ) ,即得x ≥ 2 x-1 ,也就是 xx -1 ≥ 2恒成立 .当且仅当x =2时等号成立 ,所以由 ( )式可得 a2b-1 +b2a-1 ≥ 2· 2 ·2 =8,而且仅当a =b=2时 ,a2b…  相似文献   

13.
一、构造函数图像解不等式例1如图1所示,函数y=f(x)的图像是中心在原点、焦点在x轴上的椭圆的两段弧,则不等式f(x)0).解析函数y=2x a可以看作是斜率为2、截距为a的直线,函数y=!a2-x2的图像是以原点为圆心,a为半径的在x轴上方的半圆,如图2所示.当0相似文献   

14.
在函数一章的学习中,有不少函数问题“貌合神离”,如果不去认真理解问题的实质,对于这类问题极容易混淆,造成错误.下面通过例题对这些问题予以分类解析.一、关于函数定义域问题【例1】(1)若函数f(x)=(a2-1)x2+(a-1)x+a+21的定义域为R,求实数a的取值范围;(2)若函数f(x)=2-loga(-x22+6ax-8a2)在区间2a+1,2a+23上有意义,求实数a的取值范围.解析(1)由函数的定义域为R,可知对x∈R,f(x)恒有意义,即对x∈R,(a2-1)x2+(a-1)x+a+21≥0恒成立.①当a2-1=0,即a=1(a=-1舍)时,有1≥0,对x∈R恒成立,故a=1符合题意;②当a2-1≠0,即a≠&#177;1时,则有a2-1&gt;0,Δ=(a-1)2-4(a2-1)&#215;a2+1≤0解得10loga(-x2+6ax-8a2)≠2得x2-6ax+8a2&lt;0,-x2+6ax-8a2≠a2解得2a2a3a&gt;2a+23或32aa&lt;+223a+&lt;14a...  相似文献   

15.
定理关于x的方程x+nx=a+na(an≠0)的解为x=a或x=na.证明:将原方程去分母,得ax2+an=a2x+nx,即ax2-(a2+n)x+an=0,所以(x-a)(ax-n)=0,解得x=a或x=na.经检验,x=a和x=na都是原方程的解.由这个定理,可以得到下面的推论.推论关于x的方程x+1x=a+a1的解为x=a或x=1a.掌握上述定理和推论,可以帮助我们巧解一些分式方程和分式求值问题.一、解分式方程例1解关于x的方程x+1x-1=a+a-11.解:原方程可化为(x-1)+1x-1=(a-1)+1a-1.由上述推论,得x-1=a-1或x-1=1a-1.由x-1=a-1,得x=a;由x-1=1a-1,得x=aa-1.经检验,x1=a,x2=a-a1均是原方程的解.例2解方程3xx2-1+x32-x…  相似文献   

16.
1 引例解不等式(x-4)(x~2-3x-4)~(1/2)≥0.在一次练习中,几乎所有同学均采用如下解法:原不等式等价于不等式组(?)解之得 x≥4,故原不等式解集为{x|x≥4}.显然,当 x=-1时,原不等式也能成立,因此,以上解答错了.2 探讨一  相似文献   

17.
在x1+x2+…+xn=m中,令x1=mn+t1,x2=mn+t2,…,xn=mn+tn,其中t1+t2+…+tn=0,这就是均值换元法.如在x+y=a中,可令x=a2+t,y=2a-t.一、用均值换元法化简计算例1求值:√987×989×991×993+(993-989)(991-987).解令a=987+989+4991+993=990,∴原式可化为√(a-3)(a-1)(a+1)(a+3)+4×4=√(a2-1)(a2-9)+16.令b=(a2-1)+(a2-9)2=a2-5,∴√(a2-1)(a2-9)+16=√(b+4)(b-4)+16=b=a2-5=9902-5=980095.二、用均值换元法证明不等式例2已知a+b+c=3,求证:a2+b2+c2≥3.证明令a=1+t1,b=1+t2,c=1+t3,其中t1+t2+t3=0.∴a2+b2+c2=(1+t1)2+(1+t2)2+(1+t3)2=3+2(t1+t2+t3…  相似文献   

18.
根据无理不等式的特点,构造函数,利用函数图象的高低位置关系找出不等式的解集,可以化抽象为形象,快速、简捷地解决问题. 例1解不等式 >a-x. 解在同一坐标系中,作出函数y=a-x与函数y= [即(x-a)2+y2=a2,y≥0]的图象. 当a>0时,图象如图1所示,直线与半圆交点的横坐标为2-(?)2/2 a,故不等式的解集为{x|2-(?)2/2 a相似文献   

19.
如何解可化为一元二次方程的方程x+(1/x)=c+(1/c)(关于x的方程,c≠0)?按照通常的解法,是将分式方程化为整式方程,即cx~2-(c~2+1)x+c=0,解关于x的一元二次方程得x_1=c,x_2=(1/c)经检验知x_1=c,x_2=(1/c)是原方程的解。笔者认为,倘若应用该题的结论,便可简化许多有关习题的解题过程。现举例如下:例1 解关于x的方程x+(1/(x-1))=a+(1/(a-1))。解:将原方程变形为  相似文献   

20.
例1 已知不等式|a-2x|>x-2,对x∈[0,2]恒成立,求a的取值范围.解法1:原不等式化为a-2x>x-2或a-2x<2-x,即a>3x-2或a相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号