首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
圆锥曲线中的定点、定值问题是高考的热点.笔者最近遇到一些与斜率相关的定点、定值问题,并对一般情形进行研究,可以得到一般性结论,与各位共赏.定理1:已知点A(x0,y0)是抛物线y2=2px上的定点,直线l(不过A点)与抛物线交于M、N两点.(1)若kAM+kAN=c(常数),则直线l斜率为定值;(2)若kAM·kAN=c(常数),直线l恒过定点.证明:(1)直线l斜率显然不为0,故设为x=ty+m,M(x,y),N(x,y).  相似文献   

2.
文[1]对高中数学(试验修订本·必修)第二册(上)P130例2:“直线y=x?2与抛物线y2=2x相交于点A、B,求证:OA⊥OB(如图1)”进行探究,得到如下结论:若直线l与抛物线y2=2px相交于点A、B,则OA⊥OB?直线l过定点(2p,0).文[2]在上述命题的基础上作了进一步的探究,得到如下的定理:定理若直线l与抛物线y2=2px相交于点A、B,C(x0,y0)为抛物线上不同于点A、B的一定点,若直线CA、CB的斜率存在且分别记为k CA、k CB,则k CA?k CB=d(d为定值)?直线l过定点200(2,)2y p yp?d?.(如上右图)本文在上述定理的基础上作进一步探究,对定理进行引申.1由“k CA…  相似文献   

3.
处理富于变化的一直线与某一圆锥曲线的综合问题,方法之一就是退到一元二次方程解决,其三步曲是:①直线方程代入圆锥曲线方程;②利用一元二次方程的韦达定理或判别式;③想干嘛就干嘛·本文意在揭示“想干嘛”有哪些多样化的特征,“就干嘛”又有哪些规律化的玄机·一、角平分线、弦长(或面积)问题例1如图1,过点P(1,2)的直线与抛物线y=x2相交于A、B两点,O为坐标原点,当直线OP平分∠AOB时,求直线AB的方程及△AOB的面积·解:直线y-2=k(x-1),代入y=x2得x2-kx+k-2=0·设交点A(x1,y1)、B(x2,y2),由韦达定理x1+x2=k,x1x2=k-2·因为直线OP平…  相似文献   

4.
受文献[1]的启发,本文给出圆锥曲线(椭圆、双曲线、抛物线)垂直于焦点所在对称轴的直线(简称“垂轴线”)的一个性质,并应用性质证明两组“姊妹”结论. 1 一组性质 性质1 已知椭圆Γ:x2/a2+y2/b2=1(a>b>0)与x轴交于A、B两点,直线l:x=m(| m |≠a)是垂直于x轴的一条定直线,P是椭圆Γ上异于A、B的任意一点,若直线PA交直线l于点M(m,y1),直线PB交直线l于点N(m,y2),则y1y2为定值b2/a2(a2-m2).  相似文献   

5.
在对圆锥曲线的研究中 ,笔者发现了它的一个有趣性质 ,介绍如下 .定理 1 给定抛物线C :y2 =2px(p>0 ) ,O是顶点 ,过y轴上一定点M(0 ,m) (m ≠ 0 )引直线交C于P、Q两点 ,记KOP、KOQ 分别为直线OP、OQ的斜率 ,则KOP+KOQ 为定值2pm .证明 如图 1 ,设P(x1 ,y1 ) ,Q(x2 ,y2 ) ,则yi2 =2pxi(i =1 ,2 ) .又设直线MP的斜率为k(k≠ 0 ) ,则直线MP的方程为x=y-mk ,代入C的方程并整理得ky2 - 2py+2pm =0 .由y1 ,y2 为以上关于y的二次方程的两根知y1 +y2 =2pk ,y1 y2 =2pmk .于是 ,KOP +KOQ =y1 x1 +y2x2 =2py1 +2py2 =2p(y1 +y2 )y1 y2…  相似文献   

6.
在解析几何中“求以圆锥曲线中的定点为中点的弦的方程”是直线与圆锥曲线位置关系中重要考点之一,高考中也多次出现.题目:设A、B两点是双曲线C:2x2-y2=2上两点,点N(1,2)是线段AB中点,求直线AB方程.解法1(巧用韦达定理,整体替换):要求过定点N(1,2)的直线AB的方程,关键是求斜率k.设点A(x1,y1),点B(x2,y2),由中点公式知:x1+x2=2,y1+y2=4,再利用韦达定理整体替换构造关于k的方程,求k的值.设直线AB方程为:y=k(x-1)+2,代入双曲线C的方程整理得:(2-k2)x2+2k(k-2)x-k2+4k-6=0.当2-k2≠0时,则Δ=4k2(k-2)2-4(2-k2)(-k2+4k-6)>0,解得k<23且k≠…  相似文献   

7.
抛物线的焦点弦有着很多值得思考的性质,这里略举一二.图1(一)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则弦长|AB|=x1 x2 p.这由抛物线的定义很容易得到.(二)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,如图1,其中A(x1,y1),B(x2,y2),则y1·y2=-p2.证明:抛物线y2=2px与直线AB:x=ky 2p,联立得y2-2kpy-p2=0,所以由韦达定理得y1·y2=-p2.(三)过抛物线y2=2px的焦点F的一条直线和此抛物线交于两点A、B,令|AF|=r1,|BF|=r2,则r11 r12=2p.设抛物线的焦点F2p,0,当直线的斜率不存在…  相似文献   

8.
直线和圆锥曲线相交的问题是解析几何中的重要内容之一,也是高考的热点内容.韦达定理在解决此类问题中起着重要作用,特别是在解决有关弦长、两条直线互相垂直、弦中点、对称、轨迹、定点问题时能化难为易,化繁为简. 1 韦达定理在圆锥曲线有关弦长方面的应用 例1 已知抛物线 24yx=的顶点为O, 点A(5,0)倾斜角为/4p 的直线l与线段OA相 交,但不过O,A两点,且 交抛物线与M,N两点, 求△AMN面积最大时,直线l的方程. x O y A N M 解 设直线l的方程为yxb= .联立方程yxb= 和24yx=,得22(24)0xbxb - =.由0D>,得1b<. 设1122(,),(,)MxyNxy,则 2121…  相似文献   

9.
处理直线与椭圆相交问题,采用设出交点坐标,但不求出,利用韦达定理和相关坐标去把问题转化,可巧妙解题下面用一例说明.例已知点P(4,2)是直线l被椭圆x236+y92=1所截得的线段的中点,求直线l的方程.分析本题考查直线与椭圆的位置关系问题,通常将直线方程与椭圆方程联立消去y(或x),得到关于x(或y)的一元二次方程,再由根与系数之间的关系,直接求出x1+x2,x1x2(或y1+y2、y1y2)的值代入计算即得,并不需要求出直线与椭圆的交点坐标,这种“设而不求”的方法在圆锥曲线中要经常用到.本题涉及到直线被椭圆截得弦的中点问题,也可采用点差法或中点坐标公…  相似文献   

10.
定理1圆F以圆锥曲线的一个焦点F为圆中学教研·中学教研·心,以其通径之半为直径.过F的直线l与圆锥曲线、圆F依次交于点A,B,C,D,则|AB|·|CD|为定图1值(其值为圆半径的平方).下面以椭圆为例证明该定理,对于其它圆锥曲线不难类似证明.如图1,设椭圆x2a2+y2b2=1(a>b>0),圆F:(x-c)2+y2=b44a2(其圆心为椭圆的右焦点,直径为通径之半,即r=b22a).过F的直线l与椭圆、圆F依次交于A,B,C,D,欲证|AB|·|CD|=b44a2.证明若直线l的斜率不存在,验证可知结论成立.若直线l的斜率存在,设l的方程为y=k(x-c),①将①代入椭圆方程,整理得(b2+a2k2)x2-2a2ck…  相似文献   

11.
抛物线是圆锥曲线的一种,其离心率e=1,具有很多特有的性质.引例:已知抛物线y2=2px(p>0),过抛物线焦点的一条直线与抛物线相交于A(x1,y1),B(x2,y2)两点,o为坐标原点.在这个共同的条件下,有许多定值问题.下面一一介绍.定值1x1x2=p2/4;y1y2=?p2.证明当直线斜率存在,设直线方程()(0  相似文献   

12.
2004 年福建省高考理工 22 题,文史 21 题均涉及到如下命题: P 是抛物线C : y = x2 /2上一点,直线l 过点 P 且与抛物线C 交于另一点Q ,若直线l 与过点 P 的切线垂直,求线段PQ 中点 M 的轨迹方程. 上述命题中,线段 PQ为过切点且与切线垂直的弦,点 M 为线段 PQ 的中点.这是一道求受限动弦中点轨迹的问题,本文探究此类轨迹方程的一般形式,并予以推广. 定理 1 抛物线 x2 = 2py的弦 PQ垂直于过点 P 的切线,则 PQ中点M 的轨迹方程为 y = x2 / p p3 /(2x2) p . 证明 设 P(x1, y1),Q(x2, y2) ,M(x, y) ,由 y = x2 得 y'=…  相似文献   

13.
下面是 1 992年全国高考理科试题中的一个选择题 :已知直线 l1和 l2 的夹角的平分线为 y =x,如果 l1的方程是 ax + by + c=0 ,(ab>0 ) ,那么 l2 的方程是 (   )(A) bx + ay + c=0 .(B) ax -by + c =0 .(C) bx + ay -c=0 .(D) bx -ay + c=0 .答案为 (A) .可是这个题是错题 ,原因如下 :图 1如图 1 ,直线 l1:bx + ay+ c=0 ,当 ab>0的倾斜角为钝角 ,直线 y =x与 l1的夹角大于 45°,直线 y =x平分的角是α,而角α不是 l1和l2 的夹角 .人民教育出版社中学数学室编著的全日制普通高级中学教科书 (试验修订本 .必修 ) ,《数学》第二册 (上 ) 4 8…  相似文献   

14.
一、将平面向量融入解析几何【例1】(2004年山东卷)设双曲线C:x2a2-y2=1(a>0)与直线l∶x y=1相交于两个不同的点A、B.(I)求双曲线C的离心率e的取值范围;(II)设直线l与y轴的交点为P,且P A=512P B,求a的值.分析:本小题主要考查直线、双曲线的概念和性质,平面向量的运算等知识.解题时先将直线方程代入曲线方程中,整理一下,变成一个关于x的一元二次方程,再使用韦达定理,写出两根之和与之积,最后再根据题目的要求求解.解:(I)由C与l相交于两个不同的点,故知方程组x2y2-y2=1x y=1有两个不同的实数解.消去y并整理得(1-a2)x2 2a2x-2a2=0.①所以…  相似文献   

15.
经文[1]~[4]的不断研究,文[4]得到了圆锥曲线定点弦与定直线相关性的如下两个性质:性质1椭圆x2/a2+y2/b2=1(a&gt;b&gt;0)的过定点F(m,0)(m≠0,且m0,b&gt;0)的过定点F(m,0)(m&gt;a)的两条动弦AC、BD的两端点的连线AB、CD相交于点M,AD、BC相交于点N,则点M、N的轨迹都是定直线l:x=a2/m.性质2抛物线y2=2px(p&gt;0)的过定点F(m,0)(m&gt;0)的两条动弦AC、BD的两端点的连线AB、CD相交于点M,AD、BC相交于点N,则点M、N的轨迹都是定直线l:x=?m.本文将这两个性质推广到一般的情形,以更深刻揭示圆锥曲线的几何特征.定理过定点F(x0,y0)的两条动直线AC、BD分别与圆锥曲线相交于点A、B、C、D.设直线AB、CD相交于点M,AD、BC相交于点N,则(1)当圆锥曲线为椭圆22ax2+by2=1(a&gt;b&gt;0),且F(x0,y0)不为坐标原点时,点M、N的轨迹都是定直线l:xa02x+yb02y=1;(2)当圆锥曲线为双曲线22ax2?by2=1(a&gt;0,b&gt;0),且点F(x0,y0)不为坐标原点时,点M...  相似文献   

16.
二元二次齐方程Ax2 Bxy Cy2=0,当B2-4AC>0时所表示的曲线是过坐标原点的两条直线.此统一方程在求解直线与圆锥曲线的有关问题时有着巧妙的用途,其思想方法如下:若把圆锥曲线的弦所在直线方程ax by=1代入圆锥曲线方程,将其转化为关于x、y的二次齐次方程Ax2 Bxy Cy2=0,再化成C(y/x)2 B(y/x) A=0的形式,则弦的两个端点A(x1,y1)、B(x2,y2)与原点的两条连线的斜率k1=y1/x1,k2=y2/x2为其两根,从而利用韦达定理可使相关问题获解.下面举例加以说明.  相似文献   

17.
不少文章都对焦点弦的有关性质的研究以及如何进行探究性学习进行了精彩的阐述,令人深有感触.本文试从命题的角度对此进行进一步的挖掘和探究.不妨设抛物线y2=2px(p>0),则焦点Fp2,0,准线l的方程:x=-p2.直线l1交抛物线于A(x1,y1)、B(x2,y2)两点,交x轴于点C(c,0),又作AA1⊥l,BB1⊥l,垂足分别为A1、B1(如图1所示).探究1若直线l1过焦点F,则y1y2=-p2(定值).那么其逆命题是否成立呢?分析:当l1⊥x轴时,命题显然成立.当l1与x轴不垂直时,设直线l1的方程为x=my+n,联立方程组y2=2px,x=my+n,消去x得y2-2pmy-2pn=0,∴y1y2=-2pn,∵y1y2=-p2,∴n=p2,∴…  相似文献   

18.
在高二解析几何教材的圆锥曲线一章中有这样的一个结论 :若P(x0 ,y0 )是圆 :x2 + y2 =r2 上的一点 ,那么过该点的圆的切线方程是x0 x + y0 y =r2 .(证明见教材 ) .问题 :若点P(x0 ,y0 )在圆x2 + y2 =r2 外(或圆内 )时 ,直线l:x0 x + y0 y =r2 是什么样的直线 ?与圆x2 + y2 =r2 有什么关系 ?不妨设点P(x0 ,y0 )不在坐标轴上 .直线l:x0 x + y0 y =r2 的斜率是kl =-x0y0(y0 ≠ 0 ) ,而kOP =y0x0(x0 ≠ 0 ) .∵klkOP =-1,∴直线l⊥OP .圆心O(0 ,0 )到直线x0 x + y0 y=r2 的距离为d =r2x20 + y20=r2|OP|.①由①可见 ,直线l与圆的关系由|…  相似文献   

19.
性质 过圆锥曲线上任一点 P(x0 ,y0 )作倾斜角互补的两直线交该曲线于 A,B两点 ,则直线 AB的倾斜角为定值 ,且直线 AB的倾斜角与该曲线在 P点的切线的倾斜角也互补证明 以下只证明椭圆情况 ,双曲线与抛物线同理可证 .设椭圆方程为 :x2a2 y2b2 =1,图 1(1)当 y0 =0时 ,直线 AB的倾斜角与 P点处切线的倾斜角都是90°,知结论成立 ;(2 )当 y0 ≠ 0时 ,设直线的参数方程为 :x=x0 tcosα,y=y0 tsinα,(t为参数 )代入椭圆方程整理得 :(b2 cos2 α a2 sin2 α) t2 2 (b2 x0 cosα a2 y0 sinα) t b2 x20 a2 y20 =a2 b2 .∵点 P在…  相似文献   

20.
定理已知圆锥曲线的准线与x轴相交于点E,过相应焦点F的直线与圆锥曲线相交于A、B两点,BC//x轴交准线于C点,则AC经过线段EF的中点.证明(1)若圆锥曲线为抛物线,不妨设抛物线的方程为2y=2px(p>0).当直线AB的斜率不存在时,显然定理成立.当直线AB的斜率存在时,可设直线AB的方程为:y=  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号