首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
一、要注意不等式成立的条件例1已知x,y缀R+,且1x+4y=1,求x+y的最小值.错解∵x,y∈R+,∴0<1x·4y≤眼12穴1x+4y雪演2=14,即xy≥16.∴x+y≥2xy姨≥216姨=8,∴x+y的最小值是8.分析上面解法中,连续进行了两次不等式变形:x+y≥2xy姨与2xy姨≥216姨,且这两个不等式中的等号不能同时成立.因为第一个不等式当且仅当x=y时等号成立,第二个不等式当且仅当1x=4y时等号成立,即只有x=2且y=8时等号成立.因此,x+y不可能等于8.正解∵1x+4y=1,∴x+y=(x+y)·穴1x+4y雪=yx+4xy+5≥2×yx·4xy姨+5=9.上式当且仅当yx=4xy,即y=2x时等号成立.将1x+4y=1与y=2x联立,…  相似文献   

2.
在一个涉及多个变量的问题中,若能适当地选取其中的一个变量作为主变量(也叫主元),突出其作用,则能使问题顺利得到解决.一、从整体角度选取例1已知x>0,y>0且x+y=1,求x2+y2-x2y2的取值范围.分析这里以x、y中的任意一个为主元,都会给解题带来麻烦.现取“xy”这一整体作主元.解∵x>0,y>0且x+y=1,∴2xy√≤1.∴0m>1,t>1,求证:logntmtm>…  相似文献   

3.
《高中生》2008,(18):44-45
1.问:若x>0,y>0,且1x 9y=1,则x y的最小值是A.8B.12C.16D.20解:∵1=1x 9y≥2x9y",∴xy≥36。又x y≥2"x y≥2"36=12,∴x y的最小值是12。上述解法对吗?(湖南省祁东县育贤中学王同学)高sir:上述解法在第一次运用均值不等式时取等号的条件是“1x=9y”,第二次运用均值不等式时取等  相似文献   

4.
我校高二级这次月考数学第(18)题是:已知x,y都是正数,且1/x+4/y=1,求x+y的最小值。据笔者阅卷统计约有95%的学生的解答如下:解法1:∵x〉0,y〉0,∴1=1/x+4/y≥4/√xy即√xy≥4 ①.∴x+y≥2√xy≥8 ②.即x+y的最小值是8。  相似文献   

5.
一、概念不清造成的错解1.集合A={x∈R|y=2x2+1},B={y∈R|y=2x2+1},则A与B的关系是.错解:∵x∈R,y∈R,y=2x2+1,∴A=B剖析:∵A中的元素是x∈R,即A=R,B的元素是y,又y=x2+1≥1,B={y|y≥1},故正确答案是B真包含于A·二、忽视讨论造成的错解2.若集合A={x∈R|ax2+2x+1=0,a∈R}是单元素集,则a=.错解:依题意,二次方程ax2+2x+1=0有二等实根,∴Δ=4-4a=0,即a=1·剖析:∵a∈R,∴应分a=0和a≠0两种情况讨论,当a=0时,x=-21,合题意,当a≠0时,Δ=0,得a=1,∴正确答案是a=0或1.3.集合A={x|x2-3x+2=0},B={x|ax-2=0}若B真包含于A,求实数a组成的集合…  相似文献   

6.
一、构造方程例1已知a,b缀R,且a3+b3=2,求a+b的最大值.解设a+b=t,则a3+b3=(a+b)(a2-ab+b2)=t(t2-3ab)=2,即ab=t3-23t,所以a,b是方程x2-tx+t3-23t=0的两实根.故驻=t2-4×t3-23t≥0.解得0相似文献   

7.
题目 :若 x>0 ,y>0且 x+ y≤ a( x+ y )成立 ,则 a的最小值是 (  ) .( A) 22    ( B) 2( C) 2  ( D) 2 2错解 原不等式可变形为 a≥x+ yx + y,a2≥ x+ yx+ y+ 2 xy ≥x+ yx+ y+ x+ y=12 成立 ,即 a≥ 22 ,选 A.质疑 当 x=1 ,y=3时 ,2≤ 22 ( 1 +3)不成立 ,与已知矛盾 ,因而 a的最小值不是 22 .错解看似很有道理 ,问题出在哪里 ?剖析 要使 a≥ x+ yx + y成立 ,a应不小于 x+ yx + y的最大值 ,而错解中求出x+ yx + y的最小值 ,把 x+ yx + y的最小值误认为 a的最小值 ,殊不知此最小值非彼最小值 ,因而解法是错误的 .正解 因为 ( x+ y …  相似文献   

8.
联想是以观察为基础,对研究的对象或问题,联想已有的知识和经验进行形象思维的方法.通过联想,构造相应的条件,从而解决问题.【例】 设x、y∈R+,且x+y=1,求证:(x+2)2+(y+2)2≥252.联想一:巧用“a2+b2≥2ab”法1:直接法由x+y=1,得(x+2)2+(y+2)2=x2+y2+4x+4y+8=(x+y)2+4(x+y)+8-2xy=13-2xy又∵x、y∈R+,由均值不等式,∴x+y≥2xy,即xy≤14,则-2xy≥-12.故(x+2)2+(y+2)2=13-2xy≥13-12=252.证毕.法2:间接法令a=x+2,b=y+2,则a+b=(x+2)+(y+2)=x+y+4=5(定值)∵a2+b2≥2ab,两边同时加上a2+b2得a2+b2≥(a+b)22即(x+2)2+(y+2)2≥[(x+2)+(y+2)]22=252.…  相似文献   

9.
有些同学在做不等式的习题时,曾因一道题目的两种不同解法而争论不休,现把他们的解法原原本本地写下,仔细分析一下,以防再犯类似错误.题目:设x、yR+且x+2y=1,求1x+1y的最小值.解法一:∵x,yR+且x+2y=1∴1=x+2y叟22xy姨穴1雪即xy燮18,从而1xy姨叟8姨=22姨(2)∴1x+1y叟21xy姨=21xy姨∴1x+1y叟2×22姨=42姨,∴1x+1y的最小值为42姨.解法二:∵x,yR+且x+2y=1∴1x+1y=x+2yx+x+2yy=3+2yx+xy叟3+22yxxy姨=3+22姨∴1x+1y的最小值为3+22姨.以上两种解法看似都正确,其实不然.解法一是错的,而解法二是对的.那么解法一究竟错在哪里呢?还是让我们回…  相似文献   

10.
所谓数学对称法,就是指用数学的理论与方法来定量,从而精确地描述客观事物对称性的一种方法。例1求函数Z=xy(x,y>0)满足条件x+y=1的最大值。解:根据x与y的对称性,令x=1/2-k,y=1/2+k.则Z=xy=(1/2-k)(1/2+k)=1/4-k2.故当k=0,即x=y=1/2时,z=xy取得最大值1/4.点评此题也可用代数方程解之,但相比之下,利用对称性特点解之较为简便.  相似文献   

11.
最值问题是初中数学的一个重要内容,也是各种考试命题的一个热点。笔者根据自己的教学体会,将初中阶段所涉及的求函数最值问题的题目类型归纳如下。 一、求y=ax~2+bx+c(a≠0)型的最大(小) 值 当a>0时,y最小值=(4ac-b~2)/4a;当a<0时,y最大值=(4ac-b~2)/4a。 例1.求y=-2x+7的最大值. 解 ∵a<0,∴y最大值=(81)/8. 例2.求y=2x~2-3x+4的最小值. 解 ∵a<0,∴y最小值=(23)/8. 二、求隐二次函数的最大(小)值 已知y与x不成二次函数关系,但z与x成二次函数关系,可以先求z的最大(小)值,而后再求y的最大(小)值. 例3.求函数y=1/(2+(x-1)~2)的最大值.  相似文献   

12.
<正>在一次九年级数学考试中,试卷有这样一道试题:若W=2x2-4xy+5y2+4x-2y+3,且x,y为实数,则W的最小值是__.不少同学是这样解答的:W=(x2-4xy+4y2)+(x2+4x+4)+(y2-2y+1)-2=(x-2y)2+(x+2)2+(y-1)2-2.∵(x-2y)2≥0,(x+2)2≥0,(y-1)2≥0,∴W的最小值是-2.这是一道二元函数最值问题,是典型的代数推理题.解答时,  相似文献   

13.
例 1 已知x >0 ,求函数 y =2x2 +3x的值域 .错解 ∵y=2x2 +3x=2x2 +1x +2x≥ 33 2x2 ·1x· 3x=3 3 6.故所求函数的值域为 [3 3 6,+∞ ) .剖析 由于方程 2x2 =1x =2x 无解 ,即等号不能成立 ,故求解错误 .正解 y=2x2 +3x=2x2 +32x+32x≥ 33 2x2 · 32x· 32x=323 3 6.故所求函数值域为 323 3 6,+∞ .例 2 已知 1≤a+b≤ 5 ,-1≤a-b≤ 3 ,求 3a -2b的取值范围 .错解 ∵ 1≤a+b≤ 5 ,①-1≤a-b≤ 3 ,②∴ 0 ≤ (a +b) +(a-b)≤ 8,∴ 0≤a≤ 4,③∴ 0 ≤ 3a≤ 12 ,又∵ 1≤a+b≤ 5 ,   -3≤-a +b≤ 1,∴ -2 ≤ (a +b) +( -a+b)≤ 6,∴ -…  相似文献   

14.
一、作差比较法例1求证:2+sin2x≥2(sinx+cosx).证明∵左边-右边=2(1-sinx)-2cosx(1-sinx)=2(1-sinx)(1-cosx)≥0,∴原不等式成立.二、判别式法例2已知函数:y=sec2x-tanxsec2x+tanx,求证:13≤y≤3.证明∵y=sec2x-tanxsec2x+tanx=1+tan2x-tanx1+tan2x+tanx,∴(y-1)tan2x+(y+1)tanx+(y-1)=0.当y=1时,tanx=0;当y≠1时,tanxR.∴Δ=(y+1)2-4(y-1)2≥0,∴13≤y≤3.三、分析综合法例3已知01.证明∵cosx>0,cosy>0,要证原不等式成立,只须证cos2x+y2>cosxcosy,只须证1+cos(x+y)2>cosxcosy,只须证1+cos(x+y)-2cosxco…  相似文献   

15.
申亚玲 《考试周刊》2014,(59):54-55
<正>苏教版(必修5)第97页,有这样一题:已知正数x,y满足x+2y=1,求1x+1y的最小值.本题命题的目的是运用基本不等式求最小值,但怎样运用呢?在教学中,学生大都易直接应用,而导致这样的错解:因为x>0,y>0,x+2y=1,所以x+2y≥2 2xy……①,所以xy≤18,  相似文献   

16.
一、直接法例1求函数y=1/(2+x2)的值域. 解∵x2的最小值为0, ∴y的最大值为1/2. 又∵当x无限增大时,y接近0,但总是大于0, ∴函数的值域为{y|0相似文献   

17.
根据题型数值结构特征 ,选用恰当的化简技巧 ,是解决课本二次根式题的关键。一、变换所求 ,以简改繁例 1 已知 x=12 (7+5 ) ,y=12 (7- 5 ) ,求 x2 - xy+ y2 的值。 (课本 P2 2 0第 7题 )解 :当 x =12 (7+5 ) ,y=12 (7- 5 )时 ,原式 =(x- y) 2 + xy   =(5 ) 2 + 14 (7- 5 )   =112 。二、化简变形 ,化难为易例 2 已知 x=3+ 23- 2,y= 3- 23+ 2,求 xy+ yx的值。 (课本 P2 2 1B组第 3题 )解 :∵ x=- 7- 43,y=- 7+ 4 3,∴ x+ y=- 14 ,xy=1。∴原式 =x2 + y2xy =(x+ y) 2 - 2 xyxy    =(- 14 ) 2 - 2× 1=194。三、变形凑零 ,捷足先登…  相似文献   

18.
均值不等式是指课本中的不等式:①若a、b∈R,则a2 b≥ab;②若a、b、c∈R ,则a 3b c≥3abc.那么,在运用它们求最值时,必须满足“一正、二定、三相等”这三个基本条件,但在具体的问题中,这些条件往往不全满足,这时,就必须对式子作一定的恒等变形,使它同时满足这三个条件,现将恒等变形的常见方法与技巧归纳如下:一、拆项法【例1】若x>0,求函数y=x2 2x 1x4的最小值.解:∵x>0且x2 2x 1x4=x2 1x6=x2 8x 8x,∴y=x2 8x 8x≥33x2·8x·8x=12.故当且仅当x2=8x,即x=2时,ymin=12.二、添项减项法【例2】已知a≥b>0,求y=a (2a4-b)b的最小值.解:∵a≥b>2b>…  相似文献   

19.
大家都知道,判别式主要应用于判断一元二次方程根的情况,这类问题比较简单,下面介绍判别式其他方面的一些应用·一、求条件最值问题例1已知实数x,y满足x2-12y=0,求x-3y的最值·分析:运用设“k”法消去y,即可整理成x的一元二次方程·解:设x-3y=k,则y=x3-k,代入x2-12y=0,化简得x2-4x+4k=0,所以Δ=(-4)2-4×1×4k≥0,所以k≤1,所以x-3y有最大值为1,无最小值·例2已知实数x,y满足条件x2+xy+y2=1,求x2+y2的最值·解:设x2+y2=k,则x2+ky2=1,代入x2+xy+y2=1=x2+ky2,化简得(1-1k)x2+xy+(1-1k)y2=0·整理为yx的一元二次方程为(1-1k)(xy)2+(xy)+(1-1k)=…  相似文献   

20.
一、连续使用例1 已知a/x+b/y=1,求x+y的最小值。(x、y、a、b均正数) 错解∵1=a/x+b/y≥2((ab/xy)~(1/2)) ∴(xy)~(1/2)≥2((ab)~(1/2)) ∴(x+y)≥2((xy)~(1/2))≥4((ab)~(1/2)) ∴x+y的最小值为4((ab)~(1/2)) 批注第一个“≥”中等号成立的条件为x=y,第二个“≥”中等号成立的条件为a/x=b/y,两者只有在a=b时才是相容的,而原题未给出这个条件。正确的解法为:  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号