首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The process of creating and administering traditional tagged anatomy laboratory examinations is time consuming for instructors and limits laboratory access for students. Depending on class size and the number of class, sections, creating, administering, and breaking down a tagged laboratory examination may involve one to two eight‐hour days. During the time that a tagged examination is being created, student productivity may be reduced as the anatomy laboratory is inaccessible to students. Further, the type of questions that can be asked in a tagged laboratory examination may limit student assessment to lower level cognitive abilities and may limit the instructors' ability to assess the students' understanding of anatomical and clinical concepts. Anatomy is a foundational science in the Physical Therapy curriculum and a thorough understanding of anatomy is necessary to progress through the subsequent clinical courses. Physical therapy curricula have evolved to reflect the changing role of physical therapists to primary caregivers by introducing a greater scope of clinical courses earlier in the curriculum. Physical therapy students must have a thorough understanding of clinical anatomy early in the education process. However, traditional anatomy examination methods may not be reflective of the clinical thought processes required of physical therapy students. Traditional laboratory examination methods also reduce student productivity by limiting access during examination set‐up and breakdown. To provide a greater complexity of questions and reduced overall laboratory time required for examinations, the Physical Therapy Program at Mercer University has introduced oral laboratory examinations for the gross anatomy course series. Anat Sci Educ 6: 271–276. © 2012 American Association of Anatomists.  相似文献   

2.
Anatomical knowledge is commonly assessed by practical examinations that are often administered in summative format. The format of anatomy practical examination was changed at the Lee Kong Chian School of Medicine in Singapore from summative (graded; must pass) to formative (ungraded; no pass/fail) in academic year (AY) 2017–2018. Both assessment formats were undertaken online, but the formative mode used a team-based learning activity comprising individual and team assessments. This gave an unique opportunity to investigate: (1) the impact of two different online assessment formats on student performance in practical examination; (2) the impact of new formative practical examination on students’ performance in summative examinations; and (3) students’ opinions of these two practical examination formats. The class of 2021 perceptions was obtained as they experienced both formats. A retrospective cohort study was also conducted to analyze the Year 2 students’ performance in anatomy practical and year-end summative examinations of cohorts AY 2015–2016, AY 2016–2017 (summative format), and AY 2017–2018 (formative format). There were no significant differences in students’ performance between two practical examination formats. The cohort who experienced the formative format, performed significantly better in summative examinations (mean ± SD: 82.32 ± 10.22%) compared with the cohort who experienced the summative format (73.77 ± 11.09%) (P < 0.001). Students highlighted positive features of the formative practical examination, including team reinforcement of learning, instant feedback, and enhanced learning. These findings indicate that students continue to study for anatomy practical examination without the need for external drivers. The team-based learning style practical examination enhances students’ performance in summative examinations.  相似文献   

3.
The purpose of this study was to evaluate the extracurricular cadaveric dissection program available to medical students at an institution with a modern (time‐compressed, student‐centered, and prosection‐based) approach to medical anatomy education. Quantitative (Likert‐style questions) and qualitative data (thematic analysis of open‐ended commentary) were collated from a survey of three medical student cohorts who had completed preclerkship. Perceived benefits of dissection included the hands‐on learning style and the development of anatomy expertise, while the main barrier that limited participation was the time‐intensive nature of dissection. Despite perceived benefits, students preferred that dissection remain optional. Analysis of assessments for the MD2016 cohort revealed that dissection participation was associated with enhanced performance on anatomy items in each systems‐based unit examination, with the largest benefits observed on discriminating items that assessed knowledge application. In conclusion, this study revealed that there are academic and perceived benefits of extracurricular participation in dissection. While millennial medical students recognized these benefits, these students also indicated strong preference for having flexibility and choice in their anatomy education, including the choice to participate in cadaveric dissection. Anat Sci Educ 11: 294–302. © 2017 American Association of Anatomists.  相似文献   

4.
Prior to the challenges imposed by the Covid-19 pandemic, anatomy practical sessions at Trinity College Dublin involved eight to 10 students per donor station, rotating between digital learning, anatomical models/osteology, and dissection activities for three hours weekly. To maintain cadaveric participation in the anatomy laboratory while adhering to distancing guidelines, a transition to dyad pedagogy was implemented. This mode of delivery allowed two students per donor station to spend one hour per week in the anatomy laboratory with all digital learning elements transferred to the virtual learning platform Blackboard as pre- and post-practical session learning activities. Dyad pedagogy has been explored in clinical settings and simulation procedural-based training but is yet to be fully verified in anatomy education. To determine the effectiveness of hybrid practical sessions and reduced donor to student ratios, the opinions of first year medical students were examined using an online questionnaire with a 51% response rate. Although students recognized the merits of more time in the anatomy laboratory, including opportunities for self-directed study and exposure to anatomical variation, they felt that having two students per station enabled sufficient hands-on time with the donor body and fostered learning opportunities that would not be possible with larger groups. Strong preferences for quality time with the donor body supported by online resources suggests this modality should be a key consideration in course design for anatomy curricula and emphasizes the importance of gauging students' preferences to optimize satisfaction and learning output when pivoting to blended learning strategies in anatomy education.  相似文献   

5.
With integrated curricula and multidisciplinary assessments becoming more prevalent in medical education, there is a continued need for educational research to explore the advantages, consequences, and challenges of integration practices. This retrospective analysis investigated the number of items needed to reliably assess anatomical knowledge in the context of gross anatomy and histology. A generalizability analysis was conducted on gross anatomy and histology written and practical examination items that were administered in a discipline‐based format at Indiana University School of Medicine and in an integrated fashion at the University of Alabama School of Medicine and Rush University Medical College. Examination items were analyzed using a partially nested design in which items were nested within occasions (i:o) and crossed with students (s). A reliability standard of 0.80 was used to determine the minimum number of items needed across examinations (occasions) to make reliable and informed decisions about students' competence in anatomical knowledge. Decision study plots are presented to demonstrate how the number of items per examination influences the reliability of each administered assessment. Using the example of a curriculum that assesses gross anatomy knowledge over five summative written and practical examinations, the results of the decision study estimated that 30 and 25 items would be needed on each written and practical examination to reach a reliability of 0.80, respectively. This study is particularly relevant to educators who may question whether the amount of anatomy content assessed in multidisciplinary evaluations is sufficient for making judgments about the anatomical aptitude of students. Anat Sci Educ 10: 109–119. © 2016 American Association of Anatomists.  相似文献   

6.
Practical examinations in anatomy are usually conducted on specimens in the anatomy laboratory (referred to here as the “traditional” method). Recently, we have started to administer similar examinations online using the quiz facility in Moodle?. In this study, we compare student scores between two assessment environments viz. online and traditional environments. We hypothesized that regardless of the examination medium (traditional or online) overall student performance would not be significantly different. For the online medium, radiological images, prosected specimens, and short video clips demonstrating muscle action were first acquired from resources used for teaching during anatomy practical classes. These were optimized for online viewing and then uploaded onto Moodle learning management software. With regards to the traditional format, actual specimens were usually laid out in a circular stream. Identification tags were then attached to specific spots on the specimens and questions asked regarding those identified spots. A cohort of students taking practical examinations in six courses was studied. The courses were divided into three pairs with each pair credit‐weight matched. Each pair consisted of a course where the practical examination was conducted online and the other in the traditional format. There was no significant difference in the mean scores within each course pair. In addition, a significant positive correlation between score in traditional and online formats was found. We conclude that mean grades in anatomy practical examination conducted either online or in the traditional format were comparable. These findings should reassure teachers intending to use either format for their practical examinations. Anat Sci Educ. © 2011 American Association of Anatomists.  相似文献   

7.
Many nursing curricula do not offer anatomy laboratories and exposure to cadaveric material. In this mixed methods study, nursing students' perceptions and experiences from an anatomy laboratory session were examined. Students from two academic nursing programs (a four-year general baccalaureate nursing program and a two-year accelerated nursing program for non-nursing baccalaureate graduates) took part in an anatomy laboratory session (N = 223). Participants' learning experiences, emotional experiences, and satisfaction with the anatomy laboratory session were assessed by their responses to closed-ended questionnaires. Participants' reasons for participation and suggestions for improvement were examined by open-ended questions. A mixed methods analysis of the data revealed a high level of satisfaction with the anatomy laboratory experience. Positive attitudes and learning experiences correlated with a sense of identification with the nursing profession. Satisfaction was positively associated with a perceived quality of learning and negatively associated with a negative emotional experience. Curiosity and self-challenge, as well as the quest for tangible, in-depth learning, were major motivators involved in the students' desire to participate in the session. Both qualitative and quantitative analyses indicated that the educational experience was significant. Therefore, it is recommended to integrate anatomy laboratory sessions into anatomy courses for nursing students. This will help to illustrate and assimilate classroom material and strengthen nursing students' sense of identification with their profession.  相似文献   

8.
In most medical schools, summative practical examination in Anatomy usually takes the format of a “steeplechase” (“spotters” or “bell ringers”) conducted in the gross anatomy laboratory using cadaveric material and prosected specimens. Recently, we have started to administer similar examinations online using the quiz facility in WebCT? and Moodle?. This article chronicles how we conceived and developed this method within the peculiar nature of our medical school setting. Over a five year period, practical summative examinations were organized as “steeplechase” online. The online examinations were administered using WebCT? and later Moodle? learning management software. Assessment “objects” were created from the materials available for anatomy teaching. These were digital images of cadaveric materials, radiological, and prosected specimens. In addition, short video clips of 30 seconds duration demonstrating muscle action were produced. These objects were optimized for online viewing and then uploaded onto the learning management software. A bank of questions (multiple choice or short answer type) was then created and linked to the assessment objects. These were used in place of the steeplechase in the computer laboratory. This method serves a crucial purpose in places like ours where continuous availability of human cadavers is impossible. Although time consuming initially, once questions are setup online, future retrieval, and administration becomes convenient especially where there are large batches of students. In addition, the online environment offers distinct advantages with regards to image quality, psychometric analysis of the examination and reduction of staff preparation time compared to traditional “steeplechase.” Anat Sci Educ 4: 115–118, 2011. © 2010 American Association of Anatomists.  相似文献   

9.
There are concerns among healthcare practitioners about poor anatomical knowledge among recent healthcare graduates. Universal Design for Learning (UDL) is a framework developed to enhance students' experience of learning and help students to become motivated learners. This scoping review identified whether UDL has been utilized in third level healthcare education and if so, whether it had been used to enhance student motivation to study anatomy. Seven online databases were searched for studies reporting the use of UDL in the curricula of medical, dental, occupational therapy (OT) or speech and language therapy (SLT) programs. Studies were screened for eligibility with set inclusion criteria. Data were extracted and analyzed. Analysis revealed that UDL was not specifically mentioned in any of the studies thus there are no published studies on UDL being formally applied in healthcare education. However, the authors identified 33 publications that described teaching methods which aligned with UDL in anatomy curricula and a thematic analysis yielded four main themes relating to teaching strategies being employed. Universal design for learning was not mentioned specifically, indicating that educators may not be aware of the educational framework, although they appeared to be utilizing aspects of it in their teaching. The review revealed that there is a lack of research concerning the anatomy education of OT and SLT students. The role of UDL in enhancing motivation to learn anatomy in medical, dental, OT and SLT programs has yet to be explored.  相似文献   

10.
Allied health professionals concur that a sound knowledge of practical gross anatomy is vital for the clinician, however, human anatomy courses in allied health programs have been identified as high‐risk for attrition and failure. While anatomists and clinicians agree that learning anatomy via human cadaveric instruction is the preferred method, students vary in their reaction to the cadaveric learning experience and have differing levels of anatomy self‐efficacy. This study investigated whether student self‐efficacy had an effect on student usage of supplemental instructional videos and whether the use of videos had an impact on student self‐efficacy and/or learning. Anatomy self‐efficacy differed based on gender and prior performance. Student usage of the videos varied widely and students with lower self‐efficacy were more inclined to use the resources. The provision of the videos did not improve overall cohort performance as compared to a historical cohort, however, those students that accessed all video sets experienced a greater normalized learning gain compared to students that used none or one of the four sets of videos. Student reports and usage patterns indicate that the videos were primarily used for practical class preparation and revision. Potentially, the videos represent a passive mode of teaching whereas active learning has been demonstrated to result in greater learning gains. Adapting the videos into interactive tutorials which will provide opportunity for feedback and the development of students' self‐evaluation may be more appropriate. Anat Sci Educ 11: 461–470. © 2017 American Association of Anatomists.  相似文献   

11.
At Chiba University, gross anatomy laboratory sessions (“laboratories”) are required for physical therapy students. Though most physical therapy schools require their students to participate in laboratories so that they will better understand the structure of the human body, few data exist on the value of these laboratories specifically for physical therapy students. We administered questionnaires to physical therapy undergraduate students both before and after they participated in laboratories. Questionnaire items focused on student attitudes toward the laboratories and on human life and dignity. Data from 83 students were analyzed, with the following results: (1) 74.7% of students had a positive attitude about attending laboratories before doing so; (2) with few exceptions, students' attitudes about upcoming laboratories grew more positive after experiencing the laboratory work (P < 0.001); (3) laboratories caused students to contemplate the topics of human life and dignity; and (4) 83.1% of students hoped to participate in laboratories at least four times. These results indicate that laboratories reinforce physical therapy students' positive attitudes about laboratory learning and promote student reflection on human life and dignity. This study provides support for the implementation of multiple laboratory sessions using cadavers into a uniform curriculum for physical therapy students in Japan. Anat Sci Educ 2: 273–279, 2009. © 2009 American Association of Anatomists.  相似文献   

12.
Human cadaveric prosections are a traditional, effective, and highly appreciated modality of anatomy learning. Plastic models are an alternative teaching modality, though few studies examine their effectiveness in learning of upper limb musculoskeletal anatomy. The purpose of this study is to investigate which modality is associated with a better outcome, as assessed by students' performance on examinations. Overall, 60 undergraduate medical students without previous knowledge of anatomy participated in the study. Students were assigned into two groups. Group 1 attended lectures and studied from cadaveric prosections (n = 30) and Group 2 attended lectures and used plastic models in the laboratory (n = 30). A knowledge assessment, including examination with tag questions (spot test) and written multiple-choice questions, was held after the end of the study. Students' perceptions were also investigated via an anonymous questionnaire. No significant difference in students' performance was observed between the group using prosections and the group using plastic models (32.2 ± 14.7 vs 35.0 ± 14.8, respectively; P = 0.477). Similarly, no statistically significant difference was found regarding students' satisfaction from using each learning modality (P = 0.441). Plastic models may be a valuable supplementary modality in learning upper limb musculoskeletal anatomy, despite their limitations. Easy to use and with no need for maintaining facilities, they are highly appreciated by students and can be useful when preparing for the use of cadaveric specimens.  相似文献   

13.
Anatomical examinations have been designed to assess topographical and/or applied knowledge of anatomy with or without the inclusion of visual resources such as cadaveric specimens or images, radiological images, and/or clinical photographs. Multimedia learning theories have advanced the understanding of how words and images are processed during learning. However, the evidence of the impact of including anatomical and radiological images within written assessments is sparse. This study investigates the impact of including images within clinically oriented single-best-answer questions on students' scores in a tailored online tool. Second-year medical students (n = 174) from six schools in the United Kingdom participated voluntarily in the examination, and 55 students provided free-text comments which were thematically analyzed. All questions were categorized as to whether their stimulus format was purely textual or included an associated image. The type (anatomical and radiological image) and deep structure of images (question referring to a bone or soft tissue on the image) were taken into consideration. Students scored significantly better on questions with images compared to questions without images (P < 0.001), and on questions referring to bones than to soft tissue (P < 0.001), but no difference was found in their performance on anatomical and radiological image questions. The coding highlighted areas of “test applicability” and “challenges faced by the students.” In conclusion, images are critical in medical practice for investigating a patient's anatomy, and this study sets out a way to understand the effects of images on students' performance and their views in commonly employed written assessments.  相似文献   

14.
As point-of-care ultrasound (POCUS) invades medical specialties, more students covet earlier ultrasound (US) training programs in medical school. Determining the optimal placement and format in the curriculum remains a challenge. This study uses student perceptions and confidence in interpreting and acquiring images to evaluate the effectiveness of an US curriculum and assesses their performance on US content. A unique US curriculum was incorporated into first-year clinical anatomy at Tufts University School of Medicine (TUSM). Students completed surveys evaluating changes in US confidence and perceptions. Mean ratings on pre- and post-surveys were compared using Mann–Whitney U tests. Performance on US examination questions was evaluated. Two independent evaluators coded narrative responses and NVivo software was used to identify common themes. Two hundred eleven students completed the US curriculum. Students reported higher post-curriculum mean confidence ratings on US comprehension, operation, image acquisition, artifact recognition, and normal image interpretation (P < 0.0001). US reinforced anatomy concepts and clinical correlates (9.56, ±0.97 SD; 9.60, ±1.05). Students disagreed with items stating learning US is too difficult (1.2, ±2.2) and that it interferes with learning anatomy (0.68, ±1.7). Students scored above passing on practical US knowledge questions, supporting survey data, and the relation to learning spatial relationships. Qualitative analysis identified seven major themes and additional subthemes. Limited integration of US breaks barriers in students' perceptions and confidence in performing POCUS. The TUSM US curriculum is a natural marriage of anatomy and POCUS applications, serving as a template for medical schools.  相似文献   

15.
Anatomy curricula are becoming increasingly populated with blended learning resources, which utilize the increasing availability of educational technology. The educational literature postulates that the use of technology can support students in achieving greater learning outcomes by increasing engagement. This study attempts to investigate the dimensions of student engagement with technology-enhanced learning (TEL) resources as part of a medical program’s anatomy curriculum using exploratory factor analysis. A 25-item five-point Likert-based survey was administered to 192 first-year medical students, with three emergent factors discerned: satisfaction, goal setting and planning, and physical interaction. The three factors closely aligned with the existing literature and therefore additional nonparametric analysis was conducted that explored the levels of engagement across three custom-made anatomy TEL resources, including: (1) anatomy drawing screencasts; (2) an eBook; and (3) a massive open online course (MOOC). Usage data indicated that the most popular resource to be accessed across the cohort was the anatomy drawing screencasts via YouTube, with the MOOC being used least. Moreover, some evidence suggests that those students who utilized the MOOC were more engaged. Generally, however, no correlations were observed between the levels of engagement and TEL resource usage or assessment outcomes. The results from this study provide a clear insight into how students engage with TEL resources, but do not reveal any relationship between levels of engagement, usage, and assessment outcomes.  相似文献   

16.
At the Medical College of Wisconsin, a procedure was developed to allow computerized grading and grade reporting of laboratory practical examinations in the Clinical Human Anatomy course. At the start of the course, first year medical students were given four Lists of Structures. On these lists, numbered items were arranged alphabetically; the items were anatomical structures that could be tagged on a given lab practical examination. Each lab exam featured an anatomy laboratory component and a computer laboratory component. For the anatomy lab component, students moved from one question station to another at timed intervals and identified tagged anatomical structures. As students identified a tagged structure, they referred to a copy of the list (provided with their answer sheet) and wrote the number corresponding to the structure on their answer sheet. Immediately after the anatomy lab component, students were escorted to a computer instruction laboratory where they typed their answer numbers into a secured testing component of a learning management system that recorded their answers for automatic grading. After a brief review of examination scores and item analysis by faculty, exam scores were reported to students electronically. Adding this brief computer component to each lab exam greatly reduced faculty grading time, reduced grading errors and provided faster performance feedback for students without changing overall student performance. Anat Sci Ed 1:220–223, 2008. © 2008 American Association of Anatomists.  相似文献   

17.
For centuries cadaveric dissection has been a cornerstone of medical anatomy education. However, time and financial limitations in modern, compressed medical curricula, coupled with the abundance of alternate modalities, have raised questions about the role of dissection. This study was designed to explore student perceptions of the efficacy of a dissection program for learning musculoskeletal anatomy, and possible adaptations for appropriate inclusion of dissection in the modern medical curricula. A paper-based questionnaire was used to collect data from 174 medical students after completion of cadaveric dissections. Data were analyzed using both quantitative and qualitative methods. Students strongly believed that cadaver-based learning is essential to anatomy education and modern teaching modalities only complement this. Moreover, most students reported that dissection provided an additional, immersive learning experience that facilitated active learning and helped in developing manual competencies. Students with previous dissection experience or an interest in anatomy-related specialties were significantly more likely to attend dissection sessions. Students found that the procedural dissection components enhanced the knowledge of applied anatomy and is beneficial for the development of clinical skills. They welcomed the idea of implementing more procedure-based dissections alongside lectures and prosections-based practical (PBP) sessions. Cadaveric dissection plays an integral role in medical anatomy education. Time restraints and an increased focus on clinical significance, however, demand carefully considered adaptations of existing dissection protocols. The introduction of procedure-based dissection offers an innovative, highly engaging and clinically relevant package that would amalgamate skills essential to medical practice while retaining the benefits that have allowed dissection to stand the test of time.  相似文献   

18.
Hand-held devices have revolutionized communication and education in the last decade. Consequently, mobile learning (m-learning) has become popular among medical students. Nevertheless, there are relatively few studies assessing students' learning outcomes using m-learning devices. This observational study presents an anatomy m-learning tool (eMed-App), an application developed to accompany an anatomy seminar and support medical students' self-directed learning of the skeletal system. Questionnaire data describe where, how frequently, and why students used the app. Multiple choice examination results were analyzed to evaluate whether usage of the app had an effect on test scores. The eMed-App application was used by 77.5% of the students, mainly accessed by Android smartphones, and at students' homes (62.2%) in order to prepare themselves for seminar sessions (60.8%), or to review learning content (67%). Most commonly, students logged on for less than 15 minutes each time (67.8%). Frequent app users showed better test results on items covering eMed-App learning content. In addition, users also achieved better results on items that were not related to the content of the app and, thus, gained better overall test results and lower failure rates. The top quartile of test performers used the eMed-App more frequently compared to students in lower quartiles. This study demonstrated that many students, especially the high-performing ones, made use of the eMed-App. However, the app itself did not result in better outcomes, suggesting that top students might have been more motivated to use the app than students who were generally weak in anatomy.  相似文献   

19.
Ultrasonography is a noninvasive imaging modality, and modern ultrasound machines are portable, inexpensive (relative to other imaging modalities), and user friendly. The aim of this study was to explore student perceptions of the use of ultrasound to teach “living anatomy”. A module utilizing transthoracic echocardiography was developed and presented to undergraduate medical, science, and dental students at a time they were learning cardiac anatomy as part of their curriculum. Relevant cardiac anatomy was explored on a student volunteer and images were projected in real‐time to all students via an AV projection system. Students were asked to complete a questionnaire about the learning experience and were given the opportunity to provide open feedback. The students' evaluations of this learning experience were very positive. They agreed or strongly agreed that it was an effective way to teach anatomy (90% medical; 77% dental; 100% science) and that it was incorporated in a way that promoted reinforcement of the lecture material (83% medical; 76% dental; 100% science). They agreed or strongly agreed with statements that the experience was innovative (93% medical; 92% dental; 100% science) and stimulated interest in the subject matter (86% medical; 75% dental; 96% science), and that they would like to see more modules, exploring other anatomical sites, incorporated into the curricula (83% medical; 72% dental; 100% science). We believe that ultrasound could be a useful tool, in conjunction with traditional teaching methods, to reinforce the learning of anatomy of a variety of different undergraduate student groups. Anat Sci Educ. © 2010 American Association of Anatomists.  相似文献   

20.
The role of human dissection in modern medical curricula has been a topic of intense debate. In part, this is because dissection can be time-consuming and curricular hours are being monitored more carefully. This has led some to question the efficacy and importance of dissection as a teaching method. While this topic has received considerable attention in the literature, the question of how dissection impacts learning has been difficult to evaluate in a real-world, high-stakes setting since participation in dissection is often one of many variables. In this study, this challenge was overcome due to a change in the curriculum of a Special Master Program (SMP) that permitted a comparison between two years of students that learned anatomy using prosection only and two years of students that participated in dissection laboratories. Since each class of SMP students took courses in the medical school, and the medical school anatomy curriculum was constant, medical student performance served as a control throughout the study period. Results demonstrate that SMP students who learned through prosection had lower performance on anatomy practical and written examinations compared to medical students. When the SMP program changed and students started participating in dissection, there were measurable improvements in both practical and written examinations. These findings provide evidence of dissection’s role in learning and applying anatomy knowledge both within and outside the gross anatomy laboratory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号