首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this study we investigated pre-training hydration status, fluid intake, and sweat loss in 20 elite male Brazilian adolescent soccer players (mean?±?s: age 17.2?±?0.5 years; height 1.76?±?0.05?m; body mass 69.9?±?6.0?kg) on three consecutive days of typical training during the qualifying phase of the national soccer league. Urine specific gravity (USG) and body mass changes were evaluated before and after training sessions to estimate hydration status. Players began the days of training mildly hypohydrated (USG?>?1.020) and fluid intake did not match fluid losses. It was warmer on Day 1 (33.1?±?2.4°C and43.4?±?3.2% relative humidity; P?相似文献   

2.
Abstract

Aspects of team players' performance are negatively affected when ~ 2% body mass is lost by perspiration. Although such dehydration is likely reached during summer practice in outdoors sports, it is unclear if such dehydration is achieved during the practice of indoor sports. We assessed the fluid and electrolyte deficits of elite team players during practice for the following indoor sports: indoor soccer (n=9), basketball (n=11), volleyball (n=10), and handball (n=13). Morning hydration status was estimated by measuring urine specific gravity. Sweat rate was calculated from body mass changes and fluid intake. Sweat sodium concentration from the forearm was used to estimate whole-body sodium losses. Over 91% of the players were moderately hypohydrated (urine specific gravity>1.020) at waking 3 h before practice. Indoor soccer players sweated at a higher rate (1.8 litres · h?1) than volleyball and handball players (1.2 and 1.1 litres · h?1, respectively; P<0.05), whereas sweat rate was not different between basketball players (1.5 litres · h?1) and the other team sport players (P>0.05). In average, 62±13% of sweat losses were replaced and teams' body mass loss did not exceed 1.2±0.3%. Sodium losses were similar among teams, averaging 1.2±0.2 g. The exercise fluid replacement habits of professional indoor team players are adequate to prevent 2% dehydration. However, most players could benefit from increasing fluid intake between workouts to offset the high prevalence of morning hypohydration.  相似文献   

3.
There are few data in the published literature on sweat loss and drinking behaviour in athletes training in a cool environment. Sweat loss and fluid intake were measured in 17 first-team members of an elite soccer team training for 90 min in a cool (5°C, 81% relative humidity) environment. Sweat loss was assessed from the change in body mass after correction for the volume of fluid consumed. Sweat electrolyte content was measured from absorbent patches applied at four skin sites. Mean (?± s) sweat loss during training was 1.69?±?0.45 l (range 1.06?-?2.65 l). Mean fluid intake during training was 423?±?215 ml (44?-?951 ml). There was no apparent relationship between the amount of sweat lost and the volume of fluid consumed during training (r 2 = 0.013, P = 0.665). Mean sweat sodium concentration was 42.5?±?13.0 mmol?·?l?1 and mean sweat potassium concentration was 4.2?±?1.0 mmol?·?l?1. Total salt (NaCl) loss during training was 4.3?±?1.8 g. The sweat loss data are similar to those recorded in elite players undergoing a similar training session in warm environments, but the volume of fluid ingested is less.  相似文献   

4.
AbstThis study examined the relationship between intensity of training and changes in hydration status, core temperature, sweat rate and composition and fluid balance in professional football players training in the heat. Thirteen professional football players completed three training sessions; "higher-intensity" (140 min; HI140), "lower-intensity" (120 min; LI120) and "game-simulation" (100 min; GS100). Movement demands were measured by Global Positioning System, sweat rate and concentration were determined from dermal patches and body mass change. Despite similar environmental conditions (26.9 ± 0.1 °C and 65.0 ± 7.0% relative humidity [Rh]), higher relative speeds (m · min(-1)) and increased perceptions of effort and thermal strain were observed in HI140 and GS100 compared with LI120 (P < 0.05). Significantly (P < 0.05) greater sweat rate (L · h(-1)) and electrolyte losses (g) were observed in HI140 and GS100 compared with LI120. Rate of rise in core temperature was correlated with mean speed (r = 0.85), session rating of perceived exertion (sRPE) (r = 0.61), loss of potassium (K+) (r = 0.51) sweat rate (r = 0.49), and total sweat loss (r = 0.53), with mean speed the strongest predictor. Sodium (Na+) (r = 0.39) and K+ (r = 0.50) losses were associated with total distance covered. In hot conditions, individualised rehydration practices should be adopted following football training to account for differences in sweat rate and electrolyte losses in response to intensity and overall activity within a session.  相似文献   

5.
Abstract

In this study we investigated pre-training hydration status, fluid intake, and sweat loss in 20 elite male Brazilian adolescent soccer players (mean ± s: age 17.2 ± 0.5 years; height 1.76 ± 0.05 m; body mass 69.9 ± 6.0 kg) on three consecutive days of typical training during the qualifying phase of the national soccer league. Urine specific gravity (USG) and body mass changes were evaluated before and after training sessions to estimate hydration status. Players began the days of training mildly hypohydrated (USG > 1.020) and fluid intake did not match fluid losses. It was warmer on Day 1 (33.1 ± 2.4°C and43.4 ± 3.2% relative humidity; P < 0.05) and total estimated sweat losses (2822 ± 530 mL) and fluid intake (1607 ± 460 mL) were significantly higher (P < 0.001) compared with Days 2 and 3. Data also indicate a significant correlation between the extent of sweat loss and the volume of fluid consumed (Day 1: r = 0.560, P = 0.010; Day 2: r = 0.445, P = 0.049; Day 3: r = 0.743, P = 0.0001). We conclude that young, native tropical soccer players arrive hypohydrated to training and that they exhibit voluntary dehydration; therefore, enhancing athletes' self-knowledge of sweat loss during training might help them to consume sufficient fluid to match the sweat losses.  相似文献   

6.
There are few data in the published literature on sweat loss and drinking behaviour in athletes training in a cool environment. Sweat loss and fluid intake were measured in 17 first-team members of an elite soccer team training for 90 min in a cool (5 degrees C, 81% relative humidity) environment. Sweat loss was assessed from the change in body mass after correction for the volume of fluid consumed. Sweat electrolyte content was measured from absorbent patches applied at four skin sites. Mean (+/- s) sweat loss during training was 1.69+/-0.45 l (range 1.06-2.65 l). Mean fluid intake during training was 423+/-215 ml (44-951 ml). There was no apparent relationship between the amount of sweat lost and the volume of fluid consumed during training (r2 = 0.013, P = 0.665). Mean sweat sodium concentration was 42.5+/-13.0 mmol l(-1) and mean sweat potassium concentration was 4.2+/-1.0 mmol x l(-1). Total salt (NaCl) loss during training was 4.3+/-1.8 g. The sweat loss data are similar to those recorded in elite players undergoing a similar training session in warm environments, but the volume of fluid ingested is less.  相似文献   

7.
There is limited research studying fluid and electrolyte balance in rugby union players, and a paucity of information regarding the test–retest reliability. This study describes the fluid balance of elite rugby union players across multiple squads and the reliability of fluid balance measures between two equivalent training sessions. Sixty-one elite rugby players completed a single fluid balance testing session during a game simulation training session. A subsample of 21 players completed a second fluid balance testing session during an equivalent training session. Players were weighed in minimal clothing before and after each training session. Each player was provided with their own drinks which were weighed before and after each training session. More players gained body weight (9 (14.8%)) during training than lost greater than 2% of their initial body mass (1 (1.6%)). Pre-training body mass and rate of fluid loss were significantly associated (r?=?0.318, p?=?.013). There was a significant correlation between rate of fluid loss in sessions 1 (1.74?±?0.32?L?h?1) and 2 (1.10?±?0.31?L.?h?1), (r?=?0.470, p?=?.032). This could be useful for nutritionists working with rugby squads to identify players with high sweat losses.  相似文献   

8.
ABSTRACT

The purpose of this study was to expand our previously published sweat normative data/analysis (n = 506) to establish sport-specific normative data for whole-body sweating rate (WBSR), sweat [Na+], and rate of sweat Na+ loss (RSSL). Data from 1303 athletes were compiled from observational testing (2000–2017) using a standardized absorbent sweat patch technique to determine local sweat [Na+] and normalized to whole-body sweat [Na+]. WBSR was determined from change in exercise body mass, corrected for food/fluid intake and urine/stool loss. RSSL was the product of sweat [Na+] and WBSR. There were significant differences between sports for WBSR, with highest losses in American football (1.51 ± 0.70 L/h), then endurance (1.28 ± 0.57 L/h), followed by basketball (0.95 ± 0.42 L/h), soccer (0.94 ± 0.38 L/h) and baseball (0.83 ± 0.34 L/h). For RSSL, American football (55.9 ± 36.8 mmol/h) and endurance (51.7 ± 27.8 mmol/h) were greater than soccer (34.6 ± 19.2 mmol/h), basketball (34.5 ± 21.2 mmol/h), and baseball (27.2 ± 14.7 mmol/h). After ANCOVA, significant between-sport differences in adjusted means for WBSR and RSSL remained. In summary, due to the significant sport-specific variation in WBSR and RSSL, American football and endurance have the greatest need for deliberate hydration strategies.

Abbreviations: WBSR: whole body sweating rate; SR: sweating rate; Na+: sodium; RSSL: rate of sweat sodium loss  相似文献   

9.
In this study, we assessed the pre-game hydration status and fluid balance of elite young soccer players competing in a match played in the heat (temperature 31.0 ± 2.0 ° C, relative humidity 48.0 ± 5.0%) for an official Brazilian soccer competition. Fluid intake was measured during the match, as were urine specific gravity and body mass before and after the game to estimate hydration status. Data were obtained from 15 male players (age 17.0 ± 0.6 years, height 1.78 ± 0.06 m, mass 65.3 ± 3.8 kg); however, data are only analysed for 10 players who completed the full game. The mean (± s) sweat loss of players amounted to 2.24 ± 0.63 L, and mean fluid intake was 1.12 ± 0.39 L. Pre-game urine specific gravity was 1.021 ± 0.004, ranging from 1.010 to 1.025. There was no significant correlation between sweat loss and fluid intake (r = 0.504, P = 0.137) or between urine specific gravity and fluid intake (r = -0.276, P = 0.440). We conclude that young, native tropical soccer players started the match hypohydrated and replaced about 50% of the sweat lost. Thus, effective strategies to improve fluid replacement are needed for players competing in the heat.  相似文献   

10.
我国职业足球运动员体能训练研究   总被引:4,自引:0,他引:4  
龚波 《体育科学》2005,25(10):90-95
采用文献资料调研、专家访谈、问卷调查、观察、测量、数理统计等研究方法,对我国足球运动员体能特征及其训练进行了探索,结果表明,体能是一个复杂的结构系统。足球运动员身体形态粗壮,有氧与无氧能力表现为非衡补偿性,身体素质以速度力量组合为主;位置技术与体能特征关系密切;训练诊断、计划、控制和运动营养是当前体能训练组织实施的基本内容;赛季中足球运动员体能呈耗散模型,训练计划要多样并有机贯通,正态与偏态控制、弹性控制、个体训练、负荷量度要有机配合;营养量、营养比例、营养制度及特殊营养的科学实施是体能训练的重要保证。我国足球界在训练思维理念、体能特征认识和组织实施3个层面上均存在不同程度的问题。  相似文献   

11.
Rapid and complete restoration of fluid balance after exercise is an important part of the recovery process, especially in hot, humid conditions, when sweat losses may be high. Rehydration after exercise can only be achieved if the electrolytes lost in sweat, as well as the lost water, are replaced. However, the amount of electrolytes lost in sweat is highly variable between individuals and although the optimum drink may be achieved by matching drink electrolyte intake with sweat electrolyte loss, this is virtually impossible in sport settings. The composition of sweat varies considerably not only between individuals, but also with time during exercise and it is further influenced by the state of acclimatization. A moderate excess of salt intake would appear to be beneficial as far as hydration status is concerned, without any detrimental effects on health, provided that fluid intake is in excess of sweat loss and that renal function is not impaired. To achieve effective rehydration following exercise in the heat, the rehydration beverage should contain moderately high levels of sodium (at least 50 mmol l -1 ), and possibly also some potassium. The addition of substrate is not necessary for rehydration, although a small amount of carbohydrate (< 2%) may improve the rate of intestinal uptake of sodium and water. The volume of beverage consumed should be greater than the volume of sweat lost to provide for the ongoing obligatory urine losses. Therefore, the palatability of the beverage is important. Many individuals may lose substantial amounts of sweat and will therefore have to consume large amounts of replacement fluids and this is more likely to be achieved if the taste is perceived as being pleasant. Water alone is adequate for rehydration purposes when solid food is consumed, as this replaces the electrolytes lost in sweat. However, there are many situations where intake of solid food is not possible or is deliberately avoided and, in these instances, the inclusion of electrolytes in rehydration beverages is essential. Where a second exercise bout has to be performed, replacement of sweat losses is an essential part of the recovery process. Exercise performance will be impaired if complete rehydration is not achieved.  相似文献   

12.
Abstract

This study examined the relationship between intensity of training and changes in hydration status, core temperature, sweat rate and composition and fluid balance in professional football players training in the heat. Thirteen professional football players completed three training sessions; “higher-intensity” (140 min; HI140), “lower-intensity” (120 min; LI120) and “game-simulation” (100 min; GS100). Movement demands were measured by Global Positioning System, sweat rate and concentration were determined from dermal patches and body mass change. Despite similar environmental conditions (26.9 ± 0.1°C and 65.0 ± 7.0% relative humidity [Rh]), higher relative speeds (m · min?1) and increased perceptions of effort and thermal strain were observed in HI140 and GS100 compared with LI120 (P < 0.05). Significantly (P < 0.05) greater sweat rate (L · h?1) and electrolyte losses (g) were observed in HI140 and GS100 compared with LI120. Rate of rise in core temperature was correlated with mean speed (r = 0.85), session rating of perceived exertion (sRPE) (r = 0.61), loss of potassium (K+) (r = 0.51) sweat rate (r = 0.49), and total sweat loss (r = 0.53), with mean speed the strongest predictor. Sodium (Na+) (r = 0.39) and K+ (r = 0.50) losses were associated with total distance covered. In hot conditions, individualised rehydration practices should be adopted following football training to account for differences in sweat rate and electrolyte losses in response to intensity and overall activity within a session.  相似文献   

13.
For a person undertaking regular exercise, any fluid deficit that is incurred during one exercise session can potentially compromise the next exercise session if adequate fluid replacement does not occur. Fluid replacement after exercise can, therefore, frequently be thought of as hydration before the next exercise bout. The importance of ensuring euhydration before exercise and the potential benefits of temporary hyperhydration with sodium salts or glycerol solutions are also important issues. Post-exercise restoration of fluid balance after sweat-induced dehydration avoids the detrimental effects of a body water deficit on physiological function and subsequent exercise performance. For effective restoration of fluid balance, the consumption of a volume of fluid in excess of the sweat loss and replacement of electrolyte, particularly sodium, losses are essential. Intravenous fluid replacement after exercise has been investigated to a lesser extent and its role for fluid replacement in the dehydrated but otherwise well athlete remains equivocal.  相似文献   

14.
For a person undertaking regular exercise, any fluid deficit that is incurred during one exercise session can potentially compromise the next exercise session if adequate fluid replacement does not occur. Fluid replacement after exercise can, therefore, frequently be thought of as hydration before the next exercise bout. The importance of ensuring euhydration before exercise and the potential benefits of temporary hyperhydration with sodium salts or glycerol solutions are also important issues. Post-exercise restoration of fluid balance after sweat-induced dehydration avoids the detrimental effects of a body water deficit on physiological function and subsequent exercise performance. For effective restoration of fluid balance, the consumption of a volume of fluid in excess of the sweat loss and replacement of electrolyte, particularly sodium, losses are essential. Intravenous fluid replacement after exercise has been investigated to a lesser extent and its role for fluid replacement in the dehydrated but otherwise well athlete remains equivocal.  相似文献   

15.
The purpose of this study was to establish normative data for regional sweat sodium concentration ([Na+]) and whole-body sweating rate in athletes. Data from 506 athletes (367 adults, 139 youth; 404 male, 102 female) were compiled from observational athlete testing for a retrospective analysis. The participants were skill/team-sport (including American football, baseball, basketball, soccer and tennis) and endurance (including cycling, running and triathlon) athletes exercising in cool to hot environmental conditions (15–50°C) during training or competition in the laboratory or field. A standardised regional absorbent patch technique was used to determine sweat [Na+] on the dorsal mid-forearm. Whole-body sweat [Na+] was predicted using a published regression equation (y = 0.57x+11.05). Whole-body sweating rate was calculated from pre- to post-exercise change in body mass, corrected for fluid/food intake (ad libitum) and urine output. Data are expressed as mean ± SD (range). Forearm sweat [Na+] and predicted whole-body sweat [Na+] were 43.6 ± 18.2 (12.6–104.8) mmol · L–1 and 35.9 ± 10.4 (18.2–70.8) mmol · L–1, respectively. Absolute and relative whole-body sweating rates were 1.21 ± 0.68 (0.26–5.73) L · h–1 and 15.3 ± 6.8 (3.3–69.7) ml · kg–1 · h–1, respectively. This retrospective analysis provides normative data for athletes’ forearm and predicted whole-body sweat [Na+] as well as absolute and relative whole-body sweating rate across a range of sports and environmental conditions.  相似文献   

16.
The diverse nature of the athletic events, together with the varied training programmes and individuality of athletes taking part, inevitably means that fluid needs are highly variable--between athletes, perhaps between training and competition, and with differing environmental conditions and degree of training and heat acclimatization. There are limited data from athletics on all aspects of fluid balance, but wherever possible we have focused on this information to draw conclusions. When appropriate, euhydration will best be ensured by consuming 6-8 ml . kg body mass(-1) of a sodium-containing fluid, or sodium-free fluid together with food, about 2 h before exercise. The individual sweat responses are so variable that athletes should assess their own individual sweat losses to determine if these are likely to be a cause for concern. The volume of drink that is consumed should never be so much that an athlete gains mass over an event, unless perhaps there is evidence that they began in a hypohydrated state. This may be a particular concern in the field events and multi-event disciplines when competition can be spread over a number of hours and when there are significant rest periods between activities.  相似文献   

17.
The complexity of the physical demands of soccer requires the completion of a multi-component training programme. The development, planning, and implementation of such a programme are difficult due partly to the practical constraints related to the competitive schedule at the top level. The effective planning and organisation of training are therefore crucial to the effective delivery of the training stimulus for both individual players and the team. The aim of this article is to provide an overview of the principles of training that can be used to prepare players for the physical demands of soccer. Information relating to periodisation is supported by an outline of the strategies used to deliver the acute training stress in a soccer environment. The importance of monitoring to support the planning process is also reviewed.  相似文献   

18.
Background: To determine athletes perceived and measured indices of fluid balance during training and the influence of hydration strategy use on these parameters. Methods: Thirty-three professional rugby union players completed a 120 minute training session in hot conditions (35°C, 40% relative humidity). Pre-training hydration status, sweat loss, fluid intake and changes in body mass (BM) were obtained. The use of hydration assessment techniques and players perceptions of fluid intake and sweat loss were obtained via a questionnaire. Results: The majority of players (78%) used urine colour to determine pre-training hydration status but the use of hydration assessment techniques did not influence pre-training hydration status (1.025?±?0.005 vs. 1.023?±?0.013?g.ml?1, P?=?.811). Players underestimated sweat loss (73?±?17%) to a greater extent than fluid intake (37?±?28%) which resulted in players perceiving they were in positive fluid balance (0.5?±?0.8% BM) rather than the measured negative fluid balance (?1.0?±?0.7% BM). Forty-eight percent of players used hydration monitoring strategies during exercise but no player used changes in BM to help guide fluid replacement. Conclusion: Players have difficulty perceiving fluid intake and sweat loss during training. However, the use of hydration monitoring techniques did not affect fluid balance before or during training.  相似文献   

19.
Soccer players should achieve an energy intake that provides sufficient carbohydrate to fuel the training and competition programme, supplies all nutrient requirements, and allows manipulation of energy or nutrient balance to achieve changes in lean body mass, body fat or growth. Although the traditional culture of soccer has focused on carbohydrate intake for immediate match preparation, top players should adapt their carbohydrate intake on a daily basis to ensure adequate fuel for training and recovery between matches. For players with a mobile playing style, there is sound evidence that dietary programmes that restore and even super-compensate muscle glycogen levels can enhance activity patterns during matches. This will presumably also benefit intensive training, such as twice daily practices. As well as achieving a total intake of carbohydrate commensurate with fuel needs, the everyday diet should promote strategic intake of carbohydrate and protein before and after key training sessions to optimize the adaptations and enhance recovery. The achievement of the ideal physique for soccer is a long-term goal that should be undertaken over successive years, and particularly during the off-season and pre-season. An increase in lean body mass or a decrease in body fat is the product of a targeted training and eating programme. Consultation with a sports nutrition expert can assist soccer players to manipulate energy and nutrient intake to meet such goals. Players should be warned against the accidental or deliberate mismatch of energy intake and energy expenditure, such that energy availability (intake minus the cost of exercise) falls below 125 kJ (30 kcal) per kilogram of fat-free mass per day. Such low energy availability causes disturbances to hormonal, metabolic, and immune function.  相似文献   

20.
Fluid and fuel intake during exercise   总被引:10,自引:1,他引:9  
The amounts of water, carbohydrate and salt that athletes are advised to ingest during exercise are based upon their effectiveness in attenuating both fatigue as well as illness due to hyperthermia, dehydration or hyperhydration. When possible, fluid should be ingested at rates that most closely match sweating rate. When that is not possible or practical or sufficiently ergogenic, some athletes might tolerate body water losses amounting to 2% of body weight without significant risk to physical well-being or performance when the environment is cold (e.g. 5-10 degrees C) or temperate (e.g. 21-22 degrees C). However, when exercising in a hot environment ( > 30 degrees C), dehydration by 2% of body weight impairs absolute power production and predisposes individuals to heat injury. Fluid should not be ingested at rates in excess of sweating rate and thus body water and weight should not increase during exercise. Fatigue can be reduced by adding carbohydrate to the fluids consumed so that 30-60 g of rapidly absorbed carbohydrate are ingested throughout each hour of an athletic event. Furthermore, sodium should be included in fluids consumed during exercise lasting longer than 2 h or by individuals during any event that stimulates heavy sodium loss (more than 3-4 g of sodium). Athletes do not benefit by ingesting glycerol, amino acids or alleged precursors of neurotransmitter. Ingestion of other substances during exercise, with the possible exception of caffeine, is discouraged. Athletes will benefit the most by tailoring their individual needs for water, carbohydrate and salt to the specific challenges of their sport, especially considering the environment's impact on sweating and heat stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号