首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
对于二次曲线Ax2+2Bxy+Cy2+2Dx+2Ey+F=0(A、B、C不全为零),我们记作F(x,y)=0,把经过代换所得的形如  相似文献   

2.
1、定理及其推论 定理:不过原点O的直线l:mx+my=1和圆锥曲线:Ax2+Bxy+Cy2+Dx+Ey+F=0相交于P、Q两点,且OP⊥OQ,则A+C+Dm+En+F(m2+n2)=0恒成立.  相似文献   

3.
求过二次曲线 Ax2 Bxy Cy2 Dx Ey十F=0 上的一点P(x0,y0)的切线方程,通常的做法是:设y-y0=k(x-x0),代人原方程后,令Δ =0.这样算不仅麻烦,而且建立关于x的一元二次方程系数大,很容易错.下面介绍一种简便的算法:  相似文献   

4.
有关圆锥曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的弦的中点问题,大体可分为两类:一是已知斜率为k的一组平行弦中点的轨迹(也就是直径)的方程;一是以定点(x_0,y_0)为中点的弦所在直线的方程(中点弦的方程)。下面分别作论述。一、斜率为k的一组平行弦中点的轨迹(直径)方程定理1.二次曲线f(x,y)=Ax~2+Bxy+Cy~2+Dx+Ey+F=0的斜率为k的一组平行弦中点的轨迹(即直径)方程是(2A+Bk)x+(B+2Ck)y+(D+Ek)=0①推论二次曲线的直径是一条过斜率为  相似文献   

5.
在解析几何中,经常要求这样两类中点轨迹方程:第一类是求一个定点与二次曲线上任一点的连线的中点轨迹方程;第二类是过一个定点作二次曲线的弦,求弦中点的轨迹方程。本文准备给出这两类中点轨迹方程的一般形式,利用它们,可以直接写出要求的轨迹方程。设一般二次曲线的方程为 Ax~2 Bxy Cy~2 Dx Ey F=0其中A、B、C不全为零。为了方便起见,我们设f(x,y)=Ax~2 Bxy Cy~2 Dx Ey F,这样二次曲线的  相似文献   

6.
文[1]中的“三割线定理”可推广为:图1定理(如图1)自二次曲线L外一点P作直线交L于A,B,C,D,弦AD,BC交于Q,PQ交L于E,F,则1PE+P1F=P2Q.我们需要引理[2](如图1)自二次曲线L外一点P引切线PM,PN,M,N为切点,过P引割线PAB,PCD,交L于A,B,C,D,则AD,BC,MN共点.定理的证明以P为原点,过P任一割线为x轴建立坐标系,那么过P的直线的参数方程为x=tcosθ,y=tsinθ(t为参数).1设L:Ax2+Bxy+Cy2+Dx+Ey+F=0,2则切点弦的方程为D2x+E2y+F=0.即Dx+Ey+2F=0.3考虑直线PEF:把1代入2得(Acos2θ+Bcosθ·sinθ+Csin2θ)t2+(Dcosθ+Esinθ)t+…  相似文献   

7.
<正>已知Ax2+Bxy+Cy2+Dx+Ey+F=0(≤0),求目标函数z=f(x,y)的取值范围或最值,这类问题在近几年竞赛和高考题中频繁出现.本文通过实例从三角换元的角度探讨此类问题的解法.例1已知实数x、y满足2x2-2xy+y2=1,则x+2y的取值范围为.  相似文献   

8.
本文给出圆锥曲线各种变动弦中点轨迹方程的统一求法,这种求法程序简单,便于记忆和应用。在此基础上就几类常见的弦中点轨迹问题分别举例加以说明。 一、一般圆锥曲线变动弦中点轨迹的统一方程及求法 引理:设圆锥曲线C的方程为:F(x,y)=Ax~2 Bxy Cy 2 Dx Ey F=0(1)记Fx(x,y)=2Ax By D,F'y(x,y)=Bx 2Cy E假如C以己知点M(Xo,yo)为中点的弦存在,则该弦所在直线的方程为:  相似文献   

9.
定理设二次曲线方程为F(x,y)=Ax~2+2Bxy+Cy~2+2Dx+2Ey +F=0。(1)过平面上任意一定点M(x_0,y_0)(除去曲线的中心)作动直线,与曲线(1)交于P_1、P_2两点,则弦P_1P_2的中点轨迹方程是Φ(x-x_0,y-y_0)÷F_1(x_0,y_0)(x-x_0) ÷F_2(x_0,y_0)(y-y_0)=0(2)并且曲线(1)与曲线(2)同族。其中Φ(x,y)=Ax~2+2Bxy+Cy~2 F_1(x,y)=Ax+By+D F_2(x,y)=Bx+Cy+E 证明:设过定点M(x_0,y_0)的动直线为  相似文献   

10.
一般地,设二元二次方程Ax2 Bxy Cy2 Dx Ey F=0(*)表示二次曲线. 若方程(*)能化成(x-m)2/a2 (y-n)/b2=0,或(x-m)2 (y-n)2=0的形式,则(*)表示一个点P(m,n),可以视为蜕化椭圆,或蜕化圆.  相似文献   

11.
已知Ax2+Bxy+Cy2+Dx+Ey+F=0(≤0),求目标函数Z=f(x,y)的取值范围或最值,这类问题在近几年竞赛和高考题中频繁出现,本文通过实例从三角换元的角度探讨此类问题的解法.例1(第20届"希望杯"全国数学邀请赛)  相似文献   

12.
平面解析几何中的平移公式 x=x′ h ① y=y′ k一般用来化简二次曲线方程,但若能恰适地应用平移公式,在解题时将有很大的帮助. 例1 自平面上任意一点P(h,k)作一对直线,分别与一条二次曲线Ax~2 2Bxy Cy~2 2Dx 2Ey F= ②交于Q、R及M、N四点,求证:当这对直线方向固定时,|PQ|·|PR|/|PM|·|PN|为定值. 证明:设两直线l_1、l_2的固定倾斜角分别为α、β,平移坐标原点至 P(h,k),如图,则二次曲线②化为: Ax′ 2Bx′y′ Cy′ 2(Ah Bk  相似文献   

13.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

14.
本刊2002(4)文[1]把文[2]的有两边与轴夹等角的椭圆内接三角形的性质(即文[1]的“定理”)移植到抛物线、双曲线(即文[1]的定理1、定理2),这三个定理揭示了椭圆、双曲线、抛物线的一个共性,读后颇受启发.本文把这一共性加以综合、引伸.并给出上述三个定理的一个简捷的统一证明. 我们把椭圆、双曲线、抛物线统一为圆锥曲线Г:f(x,y)=Ax2 Cy2 Dx Ey F=0.把文[1]的三个定理综合为. 定理设△ABC内接于圆锥曲线Г:f(x,y)=Ax2 Cy2 Dx Ey F=0,其两边AB、AC与Г的对称轴夹等角的充要条  相似文献   

15.
过定点M(x0,y0)作(常态)圆锥曲线Г:f(x,y)=Ax^2+Bxy+Cy^2+Dx+Ey+F=0(点M非曲线Г的中心)的弦l,若此弦被点M平分,则称弦l为中点弦.  相似文献   

16.
本文给出圆锥曲线一个与垂直有关的命题的化“1”证法 ,并给出它的应用。定理 常态二次曲线Ax2 +Cy2 +Dx +Ey +F =0交直线mx +ny+q =0 (q≠ 0 )于P、Q两点 ,则OP⊥OQ的充要条件是(A +C) q2 -(mD +nE) q +(m2 +n2 )F =0①证 将直线方程mx +ny +q =0变形为 :1 =-mx +nyq ,代入二次曲线方程 ,得 :Ax2 +Cy2 +Dx· ( -mx +nyq ) +Ey· ( -mx +nyq ) +F·( -mx +nyq ) 2 =0 ,整理得 :(Cq2 -nEq +n2 F) y2 -(nDq +mEq -2mnF)·xy +(Aq2 -mDq+m2 F)x2 =0②上式是点P、Q的坐标必须满足的约束条件。下分两种情况 :( 1 )P与Q皆不在OY…  相似文献   

17.
<正>综观近三年山东高考解析几何问题都与切线相关,其中椭圆、抛物线及圆都有涉及,或需求出切线方程,或利用给出的切线方程求解,值得仔细研究和欣赏.如果使用"四线一方程"来写出切线方程求解,则会更加简洁明快.求过曲线上一点P(x0,y0)的切线方程,常可以用"四线"一方程得到,即:对于一般的二次曲线Ax2+Bxy+Cy2+Dx+Ey+F=0,用x0x代x2,用y0y代y2,  相似文献   

18.
二元二次齐方程Ax2 Bxy Cy2=0,当B2-4AC>0时所表示的曲线是过坐标原点的两条直线.此统一方程在求解直线与圆锥曲线的有关问题时有着巧妙的用途,其思想方法如下:若把圆锥曲线的弦所在直线方程ax by=1代入圆锥曲线方程,将其转化为关于x、y的二次齐次方程Ax2 Bxy Cy2=0,再化成C(y/x)2 B(y/x) A=0的形式,则弦的两个端点A(x1,y1)、B(x2,y2)与原点的两条连线的斜率k1=y1/x1,k2=y2/x2为其两根,从而利用韦达定理可使相关问题获解.下面举例加以说明.  相似文献   

19.
直线与二次曲线的位置关系,可以由它们的方程所组成的方程组解的个数,及二次曲线的形状来确定,讨论如下:设直线L与二次曲线M的方程分别为:L:A1x+B1y+C1=0(1)M:Ax2+Bxy+Cy2+Dx+Ey+F=0(2)其中A1、B1至少有一个不等于零。A、B、C至少有一个不等于零。1当B1≠0时,令-A1/B1=k,-C1/B1=b则方程(1)化为:y=kX+b,再把它代入方程(2)并整理得:(A+Bk+Ck2)x2+(Bb+2bc+D+EK)x+b2C+bE+F=0(3)1.1当A+Bk+Ck2≠0时,方程(3)是关于x的一元二次方程。其判别式Δ为:Δ=(Bb+2bC+D+Ek…  相似文献   

20.
已知二次曲线方程为:F(x,y)=Ax~2 Bxy Cy~2 Dx Ey F=0,若以点P(x_0,y_0)为中点的二次曲线的弦存在,求这弦所在的直线方程,是解析几何里常见的一类问题。本文旨在给出这弦所在直线方程的四种求法。 方法一,设所求直线方程为y-y_0=k(x-x_0)将y=k(x-x_0) y_0代入二次曲线方程,整理得:(A BK CK~2)x~2-[2Cx_0k~2 (Bx_0-2Cy_0-E)k-(By_0 D)]x [Cx_0~2k~2-(2Cx_0y_0 Ex_0)k (Cy_0~2 Ey_0 F)]=0  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号