首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this paper, a novel tracking control scheme for continuous-time nonlinear affine systems with actuator faults is proposed by using a policy iteration (PI) based adaptive control algorithm. According to the controlled system and desired reference trajectory, a novel augmented tracking system is constructed and the tracking control problem is converted to the stabilizing issue of the corresponding error dynamic system. PI algorithm, generally used in optimal control and intelligence technique fields, is an important reinforcement learning method to solve the performance function by critic neural network (NN) approximation, which satisfies the Lyapunov equation. For the augmented tracking error system with actuator faults, an online PI based fault-tolerant control law is proposed, where a new tuning law of the adaptive parameter is designed to tolerate four common kinds of actuator faults. The stability of the tracking error dynamic with actuator faults is guaranteed by using Lyapunov theory, and the tracking errors satisfy uniformly bounded as the adaptive parameters get converged. Finally, the designed fault-tolerant feedback control algorithm for nonlinear tracking system with actuator faults is applied in two cases to track the desired reference trajectory, and the simulation results demonstrate the effectiveness and applicability of the proposed method.  相似文献   

3.
In this paper, a novel fast attitude adaptive fault-tolerant control (FTC) scheme based on adaptive neural network and command filter is presented for the hypersonic reentry vehicles (HRV) with complex uncertainties which contain parameter uncertainties, un-modeled dynamics, actuator faults, and external disturbances. To improve the performance of closed-loop FTC, command filter and neural network are introduced to reconstruct system nonlinearities that are related to complex uncertainties. Compared with the FTC scheme with only neural network, the FTC scheme with command filter and neural network has fewer controller design parameters so that the computational complexity is decreased and the control efficiency is improved, which is of great significance for HRV. Then, the adaptive backstepping fault-tolerant controller based on command filter and neural network is designed, which can solve the complexity explosion problem in the standard backstepping control and the small uncertainty problem in the backstepping control only containing command filter. Moreover, to improve the approximation accuracy of the neural network-based universal approximator, an adaptive update law of neural network weights is designed by using the convex optimization technique. It is proved that the presented FTC scheme can ensure that the closed-loop control system is stable and the tracking errors are convergent. Finally, simulation results are carried out to verify the superiority and effectiveness of the presented FTC scheme.  相似文献   

4.
In this paper, a novel event-triggered adaptive fault-tolerant control scheme is proposed for a class of nonlinear systems with unknown actuator faults. Multiplicative faults and additive faults are taken into account simultaneously, both of which may vary with time. Different from existing results, our controller fuses static reliability information and dynamic online information, which is helpful to enhance the fault-tolerant capability. With the aid of an event-triggering mechanism, an actuator switching strategy and a bound estimation approach, the communication burden is significantly reduced and the impacts of the actuator faults as well as the network-induced error are effectively compensated for. Moreover, by employing the prescribed performance control technique, the system tracking error can converge to a predefined arbitrarily small residual set with prescribed convergence rate and maximum overshoot, which implies that the proposed scheme is able to ensure rapid and accurate tracking. Simulation results are presented to illustrate the effectiveness of the proposed scheme.  相似文献   

5.
This paper proposes an adaptive data-driven fault-tolerant control scheme using the Koopman operator for unknown dynamics subjected to nonlinearities, time-varying loss of effectiveness, and additive actuator faults. The main objective of this method is to design a virtual actuator to hide actuator faults from the view of the system’s nominal controller without having any prior knowledge about the system’s underlying dynamics. The designed virtual actuator is placed between the faulty plant and the nominal controller of the system to keep the dynamical system’s performance consistent before and after the occurrence of actuator faults. Based on the Koopman operator theory, an equivalent Koopman predictor is first obtained using the process data only, without knowing the governing equations of the underlying dynamics. Koopman operator is an infinite-dimensional, linear operator which takes the nonlinear process data into an infinite-dimensional feature space where the dynamic data correlations have linear behavior. Next, based on the approximated system’s Koopman operator, a virtual actuator is designed and implemented without knowing the system’s nominal controller. Needless to use a separate fault detection, isolation, and identification module to perform fault-tolerant control, the current method leverages the adaptive framework to keep the system’s desired performance in facing time-varying additive and loss of effectiveness actuator faults. Finally, the approach’s efficacy is demonstrated using simulation on a two-link manipulator benchmark, and a comparison study is presented.  相似文献   

6.
In this paper a novel adaptive robust fault-tolerant sync control method is proposed for a two-slider system where two sliders are constrained by a flexible beam. At first the dynamic models of sync motion system subject to external disturbances and actuator faults are derived. In order to avoid the shortcomings of truncated model, the model of flexible beam is described by using infinite dimensional equation. Then based on the models a novel disturbance observer and an adaptive fault-tolerant control law are designed. The disturbance observer is used to estimate and cancel external disturbances. The adaptive fault-tolerant control is used to deal with the partial loss of effectiveness faults. Lyapunov functional approach is used to prove that the closed-loop system with the proposed control laws is uniformly bounded stable. Finally, some simulation results display that the proposed control laws can obtain excellent sync performance in the present of external disturbances and actuator partial loss of effectiveness faults.  相似文献   

7.
This paper proposes an adaptive approximation design for the decentralized fault-tolerant control for a class of nonlinear large-scale systems with unknown multiple time-delayed interaction faults. The magnitude and occurrence time of the multiple faults are unknown. The function approximation technique using neural networks is employed to adaptively compensate for the unknown time-delayed nonlinear effects and changes in model dynamics due to the faults. A decentralized memoryless adaptive fault-tolerant (AFT) control system is designed with prescribed performance bounds. Therefore, the proposed controller guarantees the transient performance of tracking errors at the moments when unexpected changes of system dynamics occur. The weights for neural networks and the bounds of residual approximation errors are estimated by using adaptive laws derived from the Lyapunov stability theorem. It is also proved that all tracking errors are preserved within the prescribed performance bounds. A simulation example is provided to illustrate the effectiveness of the proposed AFT control scheme.  相似文献   

8.
This paper utilizes the sliding mode approach to tackle the issue of adaptive control for uncertain switched systems with time-varying delay and actuator faults. Firstly, a kind of mathematical model of switched time-varying delay systems under sudden actuator faults is defined. Then, a linear sliding manifold is constructed, followed by some adequate conditions for exponential stability of the switched systems running on the sliding phase. Furthermore, an adaptive fault-tolerant controller for handling the actuator degradation is designed and the reachability of the established sliding manifold is proved. At last, a series of simulation examples are provided to demonstrate the efficiency of the proposed solution.  相似文献   

9.
In this paper, the problem of adaptive fuzzy fault-tolerant control is investigated for a class of switched uncertain pure-feedback nonlinear systems under arbitrary switching. The considered actuator failures are modeled as both lock-in-place and loss of effectiveness. By utilizing mean value theorem, the considered pure-feedback systems are transformed into a class of switched nonlinear strict-feedback systems. Under the framework of backstepping design technique and common Lyapunov function (CLF), an adaptive fuzzy fault-tolerant control (FTC) method with predefined performance bounds is developed. It is proved that under the proposed controller, all the signals of the close-loop systems are bounded and the state tracking error for each step remains within the prescribed performance bound (PPB) regardless of actuator faults and the system switchings. In addition, the tracking errors and magnitudes of control inputs can be reduced by adjusting the PPB parameters of errors in the first and last steps. The simulation results are provided to show the effectiveness of the proposed control scheme.  相似文献   

10.
This paper studies the sampled outputs-based adaptive fault-tolerant control problem for a class of strict-feedback uncertain nonlinear systems, where the nonlinear functions are allowed to include the unmeasured system states. Within the framework, a sampled output observer is introduced to jointly estimate the system states and parameters. By combining the estimated states and the supervisory switching strategy, an adaptive fault-tolerant controller is designed to achieve the desirable tracking performance. By using Lyapunov stability theory, it is proved that all the signals of the closed-loop systems are bounded and the tracking error converges to an adjustable neighbourhood of the origin eventually both in the fault free and faulty cases. Especially, if the outputs are available all the time, the proposed output feedback fault-tolerant control method can ensure the tracking error satisfy the prescribed performance bounds regardless of the faults. Finally, two examples are used to illustrate the effectiveness of the proposed method.  相似文献   

11.
This paper investigates a novel strategy which can address the fault-tolerant control (FTC) problem for nonlinear strict-feedback systems containing actuator saturation, unknown external disturbances, and faults related to actuators and components. In such method, the unknown dynamics including faults and disturbances are approximated by resorting to Neural-Networks (NNs) technique. Meanwhile, a back-stepping technique is employed to build a fault-tolerant controller. It should be stressed that the main advantage of this strategy is that the NN weights are updated online based on gradient descent (GD) algorithm by minimizing the cost function with respect to NNs approximation error rather than regarding weights as adaptive parameters, which are designed according to Lyapunov theory. In addition, the convergence proof of NN weights and the stability proof of the proposed FTC method are given. Finally, simulation is performed to demonstrate the effectiveness of the proposed strategy in dealing with unknown external disturbances, actuator saturation and the faults related to the components and actuators, simultaneously.  相似文献   

12.
This paper investigates the controller design problem of cyber-physical systems (CPSs) to ensure the reliability and security when actuator faults in physical layers and attacks in cyber layers occur simultaneously. The actuator faults are time-varying, which cover bias fault, outage, loss of effectiveness and stuck. Besides that, some state-dependent cyber attacks are launched in control input commands and system measurement data channels, which may lead state information to the opposite direction. A novel co-design controller scheme is constructed by adopting a new Lyapunov function, Nussbaum-type function, and direct adaptive technique, which may further relax the requirements of actuator/sensor attacks information. It is proven that the states of the closed-loop system asymptotically converge to zero even if actuator faults, actuator attacks and sensor attack are time-varying and co-existing. Finally, simulation results are presented to show the effectiveness of the proposed control method.  相似文献   

13.
In this work, we developed a novel active fault-tolerant control (FTC) design scheme for a class of nonlinear dynamic systems subjected simultaneously to modelling imperfections, parametric uncertainties and sensor faults. Modelling imperfections and parametric uncertainties are dealt with using an adaptive radial basis function neural network (RBFNN) that estimates the uncertain part of the system dynamics. For sensor fault estimation (FE), a nonlinear observer based on the estimated dynamics is designed. A scheme to estimate sensor faults in real-time using the nonlinear observer and an additional RBFNN is developed. The convergence properties of the RBFNN, used in the fault FE part, are improved by using a sliding surface function. For FTC design, a sliding surface is designed that incorporates the real-time sensor FE. The resulting sliding mode control (SMC) technique-based FTC law uses the estimated dynamics and real-time sensor FE. A double power-reaching law is adopted to design the switching part of the control law to improve the convergence and mitigate the chattering associated with the SMC. The FTC works well in the presence and absence of sensor faults without the requirement for controller reconfiguration. The stability of the proposed active FTC law is proved using the Lyapunov method. The developed scheme is implemented on a nonlinear simulation of an unmanned aerial vehicle (UAV). The results show good performance of the proposed unified FE and the FTC framework.  相似文献   

14.
This study investigates the distributed fault-tolerant output regulation for heterogeneous linear multi-agent systems in the presence of actuator faults. For the systems which are not the neighbors of exosystem, the distributed fixed-time observer is put forward to observe the state of exosystem. Note that it is dependent on the global information of network topology. To address this issue, the fully distributed adaptive fixed-time observer is further proposed. It can estimate not only the state of exosystem, but also the system matrix of exosystem. Based on the proposed observer, a novel fault-tolerant controller is developed to compensate for actuator faults. Moreover, it is proven that the proposed controller is effective to address the fault-tolerant output regulation problem by the Lyapunov stability theory. Finally, two illustrative examples are given to illustrate the feasibility of the main theoretical findings.  相似文献   

15.
In this paper, a learning-based active fault-tolerant control (FTC) scheme for robot manipulators with uncertainties and actuator faults is proposed. Unlike traditional FTC methods, with dynamic learning theory, both uncertainties and actuator faults can be accurately identified/learned by radial basis function networks. Based on the learned knowledge, dynamical classifiers and experience-based controllers corresponding to different fault modes are constructed. With the help of dynamical classifiers, fault detection and isolation can be obtained rapidly and accurately, and the correct experience-based controller (instead of the controller reconfigured online) corresponding to the current fault system is selected to compensate for faults, and superior control performance is achieved, even in the presence of faults. The simulation studies demonstrate the feasibility of the proposed FTC method.  相似文献   

16.
In this paper, an active fault tolerant control (AFTC) scheme is proposed for more electric aircraft (MEA) equipped with dissimilar redundant actuation system (DRAS). The effect of various fault/failure of hydraulic actuator (HA) on the system performance is analyzed in this work. In nominal condition, the state feedback control law is designed for primary control surfaces. In the presence of fault/failure of certain HA, control allocation (CA) scheme together with integral sliding mode controller (ISMC) is retrofitted with existing control law and engaged the secondary (redundant) actuators into the loop. A modified recursive least square (RLS) algorithm is proposed to identify the parametric faults in HA and to measure the effectiveness level of the actuator. In an event of failure of all HA’s in the system, electro hydraulic actuators (EHA) are taken in loop to bring the system back to its nominal operation. In order to stabilize the closed-loop dynamics of HA and EHA, fractional order controllers are designed separately for each actuator. Simulations on the lateral directional model of aircraft demonstrated the effectiveness of the proposed scheme as compared to the existing methods in the literature.  相似文献   

17.
This paper is concerned with the event-triggered fault estimation and fault-tolerant control for continuous-time dynamic systems subject to system fault and external disturbance under network environment. Firstly, based on the event-triggered sampling, a fault diagnosis observer is constructed to estimate both the system state and the system fault simultaneously, and a multi-objective constraint is established to guarantee the estimation accuracy. Based on the estimated system state and fault signal, a fault-tolerant controller is proposed to compensate the influence of occurred faults and maintain the system performance. The event-triggered scheme and the fault-tolerant controller are co-designed to guarantee the required performance of faulty system and reduce the consumption of communication resources. Finally, simulation results of an F-404 aircraft engine system are provided to demonstrate the effectiveness of the proposed method.  相似文献   

18.
This paper addresses the problem of adaptive fault estimation and fault-tolerant control for a class of nonlinear non-Gaussian stochastic systems subject to time-varying loss of control effectiveness faults. In this work, time-varying faults, Lipschitz nonlinear property and general stochastic characteristics are taken into consideration in a unified framework. Instead of using the system output signal, the output distribution is adopted for shape control. Both the states and faults are simultaneously estimated by an adaptive observer. Then, a fault tolerant shape controller is designed to compensate for the faults and realize stochastic output distribution tracking. Both the fault estimation and the fault tolerant control schemes are designed based on linear matrix inequality (LMI) technique. Satisfactory performance has been obtained for a numerical simulation example. Furthermore the proposed scheme is successfully tested in a case study of particle size distribution control for an emulsion polymerization reactor.  相似文献   

19.
Actuator faults often occur in physical systems, which seriously affect the transient performance and control accuracy of the system. For the finite-time consensus tracking problem of multiple Lagrangian systems with actuator faults and preset error constraints, a novel distributed fault-tolerant controller is proposed in this paper. The proposed controller is developed based on the barrier Lyapunov function method and the adding a power integrator technique, which can not only guarantee the steady-state performance of the system but also its transient performance. Due to its strong sensitivity to the variation of system errors, the proposed controller can quickly eliminate the system initial errors and the error perturbations caused by actuator faults. That is, the controller can guarantee that the consensus error converges to zero in a finite time and is always constrained within the preset error bound. Finally, the effectiveness of the developed controller is verified by simulation of a multi-manipulator system.  相似文献   

20.
In this paper, a decentralized adaptive backstepping control scheme is proposed for a class of interconnected systems with nonlinear multisource disturbances and actuator faults. The nonlinear multisource disturbances comprise of two parts: one is the time-varying parameterized uncertainty; the other is the dynamic unexpected signal formulated by a nonlinear exogenous system. For each subsystem, the disturbances are compensated by an adaptive controller based on several dynamic signals and the bound estimation approach. Moreover, the effect of the actuator faults is tackled in spite of the fact that the faults may change in different cases infinite times. Meanwhile, through several smooth functions, the interactions among the subsystems are successfully disposed. As a result, the tracking errors can converge to an arbitrarily small value by choosing the design parameters appropriately. The proof of the closed-loop system stability is completed. Several illustrative examples are employed to demonstrate the effectiveness of the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号