首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The main aim of this study was to determine whether the use of an imposed or freely chosen crank rate would influence submaximal and peak physiological responses during arm crank ergometry. Fifteen physically active men participated in the study. Their mean age, height, and body mass were 25.9 (s = 6.2) years, 1.80 (s = 0.10) m, and 78.4 (s = 6.1) kg, respectively. The participants performed two incremental peak oxygen consumption (VO(2peak)) tests using an electronically braked ergometer. One test was performed using an imposed crank rate of 80 rev x min(-1), whereas in the other the participants used spontaneously chosen crank rates. The order in which the tests were performed was randomized, and they were separated by at least 2 days. Respiratory data were collected using an on-line gas analysis system, and fingertip capillary blood samples ( approximately 20 microl) were collected for the determination of blood lactate concentration. Heart rate was also recorded throughout the tests. Time to exhaustion was measured and peak aerobic power calculated. Submaximal data were analysed using separate two-way repeated-measures analyses of variance, while differences in peak values were analysed using separate paired t-tests. Variations in spontaneously chosen crank rate were assessed using a one-way analysis of variance with repeated measures. Agreement between the crank rate strategies for the assessment of peak values was examined by calculating intra-class correlation coefficients (ICC) and 95% limits of agreement (95% LoA). While considerable between-participant variations in spontaneously chosen crank rate were observed, the mean value was not different (P > 0.05) from the imposed crank rate of 80 rev x min(-1) at any point. No differences (P > 0.05) were observed for submaximal data between crank strategies. Furthermore, mean peak minute power [158 (s = 20) vs. 158 (s = 18) W], time to exhaustion [739 (s = 118) vs. 727 (s = 111) s], and VO(2peak)[3.09 (s = 0.38) vs. 3.04 (s = 0.34) l x min(-1)] were similar for the imposed and spontaneously chosen crank rates, respectively. However, the agreement for the assessment of VO(2peak) (ICC = 0.78; 95% LoA = 0.04 +/- 0.50 l x min(-1)) between the cranking strategies was considered unacceptable. Our results suggest that either an imposed or spontaneously chosen crank rate strategy can be used to examine physiological responses during arm crank ergometry, although it is recommended that the two crank strategies should not be used interchangeably.  相似文献   

2.
We examined the effects of pre-exercise sodium bicarbonate (NaHCO3) ingestion on the slow component of oxygen uptake (VO2) kinetics in seven professional road cyclists during intense exercise. One hour after ingesting either a placebo or NaHCO3 (0.3 g x kg body mass(-1)), each cyclist (age, 25 +/- 2 years; VO2max, 74.7 +/- 5.9 ml x kg(-1) x min(-1); mean +/- s) performed two bouts of 6 min duration at an intensity of 90% VO2max interspersed by 8 min of active recovery. Gas exchange and blood data (pH, blood lactate concentration and [HCO3-]) were collected during the tests. In both bouts, the slow component of VO2 was defined as the difference between end-exercise VO2 and the VO2 at the end of the third minute. No significant difference was found in the slow component of VO2 between conditions in the first (NaHCO3, 210 +/- 69 ml; placebo, 239 +/- 105 ml) or second trial (NaHCO3, 123 +/- 88 ml; placebo, 197 +/- 101 ml). In conclusion, pre-exercise NaHCO3 ingestion did not significantly attenuate the VO2 slow component of professional road cyclists during high-intensity exercise.  相似文献   

3.
The intent of this study was two-fold. The first aim was to investigate how cyclists orient forces applied by the feet to the pedals in response to varying power output and cadence demands, and the second was to assess whether competitive riders responded differently from recreational riders to such variations. One group consisted of US Cycling Federation category II licensed competitive cyclists (n = 7) and the second group consisted of recreational cyclists with no competitive experience (n = 38). The subjects rode an instrumented stationary 10-speed geared bicycle mounted on a platform designed to provide rolling and inertial resistance for six pedal rate/power output conditions for a minimum of 2 min for each ride. The pedalling rates were 60, 80 and 100 rev min-1 and the power outputs 100 and 235 W. All rides were presented in random order. The forces applied to the pedals, the pedal angle with respect to the crank and the crank angle were recorded for the final 30 s of each ride. From these data, a number of variables were computed including peak normal and tangential forces, crank torque, angular impulse, proportion of resultant force perpendicular to the crank, and pedal angle. Both the competitive and recreational groups responded similarly to increases in cadence and power output. There was a decrease in the peak normal forces, whereas the tangential component remained almost constant as cadence was increased. Regardless of cadence, the riders responded to increased power output demands by increasing the amount of positive angular impulse. All the riders had a reduced index of effectiveness as cadence increased. This was found to be the result of the large effect of the forces during recovery on this calculation. There were no significant differences between the two groups in each of these variables over all conditions. It was concluded that the lack of difference between the groups was a combined consequence of the limited degrees of freedom associated with the bicycle and that the relatively low power output for the competitive riders was insufficient to discriminate or highlight superior riding technique.  相似文献   

4.
The aim of this study was to assess the sensitivity of the lactate minimum speed test to changes in endurance fitness resulting from a 6 week training intervention. Sixteen participants (mean +/- s: age 23+/-4 years; body mass 69.7+/-9.1 kg) completed 6 weeks of endurance training. Another eight participants (age 23+/-4 years; body mass 72.7+/-12.5 kg) acted as non-training controls. Before and after the training intervention, all participants completed: (1) a standard multi-stage treadmill test for the assessment of VO2max, running speed at the lactate threshold and running speed at a reference blood lactate concentration of 3 mmol x l(-1); and (2) the lactate minimum speed test, which involved two supramaximal exercise bouts and an 8 min walking recovery period to increase blood lactate concentration before the completion of an incremental treadmill test. Additionally, a subgroup of eight participants from the training intervention completed a series of constant-speed runs for determination of running speed at the maximal lactate steady state. The test protocols were identical before and after the 6 week intervention. The control group showed no significant changes in VO2max, running speed at the lactate threshold, running speed at a blood lactate concentration of 3 mmol x l(-1) or the lactate minimum speed. In the training group, there was a significant increase in VO2max (from 47.9+/-8.4 to 52.2+/-2.7 ml x kg(-1) x min(-1)), running speed at the maximal lactate steady state (from 13.3+/-1.7 to 13.9+/-1.6 km x h(-1)), running speed at the lactate threshold (from 11.2+/-1.8 to 11.9+/-1.8 km x h(-1)) and running speed at a blood lactate concentration of 3 mmol x l(-1) (from 12.5+/-2.2 to 13.2+/-2.1 km x h(-1)) (all P < 0.05). Despite these clear improvements in aerobic fitness, there was no significant difference in lactate minimum speed after the training intervention (from 11.0+/-0.7 to 10.9+/-1.7 km x h(-1)). The results demonstrate that the lactate minimum speed, when assessed using the same exercise protocol before and after 6 weeks of aerobic exercise training, is not sensitive to changes in endurance capacity.  相似文献   

5.
The aim of this study was to assess the responses of blood lactate and pyruvate during the lactate minimum speed test. Ten participants (5 males, 5 females; mean +/- s: age 27.1+/-6.7 years, VO2max 52.0+/-7.9 ml x kg(-1) x min(-1)) completed: (1) the lactate minimum speed test, which involved supramaximal sprint exercise to invoke a metabolic acidosis before the completion of an incremental treadmill test (this results in a 'U-shaped' blood lactate profile with the lactate minimum speed being defined as the minimum point on the curve); (2) a standard incremental exercise test without prior sprint exercise for determination of the lactate threshold; and (3) the sprint exercise followed by a passive recovery. The lactate minimum speed (12.0+/-1.4 km x h(-1)) was significantly slower than running speed at the lactate threshold (12.4+/-1.7 km x h(-1)) (P < 0.05), but there were no significant differences in VO2, heart rate or blood lactate concentration between the lactate minimum speed and running speed at the lactate threshold. During the standard incremental test, blood lactate and the lactate-to-pyruvate ratio increased above baseline values at the same time, with pyruvate increasing above baseline at a higher running speed. The rate of lactate, but not pyruvate, disappearance was increased during exercising recovery (early stages of the lactate minimum speed incremental test) compared with passive recovery. This caused the lactate-to-pyruvate ratio to fall during the early stages of the lactate minimum speed test, to reach a minimum point at a running speed that coincided with the lactate minimum speed and that was similar to the point at which the lactate-to-pyruvate ratio increased above baseline in the standard incremental test. Although these results suggest that the mechanism for blood lactate accumulation at the lactate minimum speed and the lactate threshold may be the same, disruption to normal submaximal exercise metabolism as a result of the preceding sprint exercise, including a three- to five-fold elevation of plasma pyruvate concentration, makes it difficult to interpret the blood lactate response to the lactate minimum speed test. Caution should be exercised in the use of this test for the assessment of endurance capacity.  相似文献   

6.
The aims of this study were to compare the physiological and anthropometric characteristics of successful mountain bikers and professional road cyclists and to re-examine the power-to-weight characteristics of internationally competitive mountain bikers. Internationally competitive cyclists (seven mountain bikers and seven road cyclists) completed the following tests: anthropometric measurements, an incremental cycle ergometer test and a 30 min laboratory time-trial. The mountain bikers were lighter (65.3+/-6.5 vs 74.7+/-3.8 kg, P= 0.01; mean +/- s) and leaner than the road cyclists (sum of seven skinfolds: 33.9+/-5.7 vs 44.5+/-10.8 mm, P = 0.04). The mountain bikers produced higher power outputs relative to body mass at maximal exercise (6.3+/-0.5 vs 5.8+/-0.3 W x kg(-1), P= 0.03), at the lactate threshold (5.2+/-0.6 vs 4.7+/-0.3 W x kg(-1), P= 0.048) and during the 30 min time-trial (5.5+/-0.5 vs 4.9+/-0.3 W x kg(-1), P = 0.02). Similarly, peak oxygen uptake relative tobody mass was higher in the mountain bikers (78.3+/-4.4 vs 73.0+/-3.4 ml x kg(-1) x min(-1), P = 0.03). The results indicate that high power-to-weight characteristics are important for success in mountain biking. The mountain bikers possessed similar anthropometric and physiological characteristics to previously studied road cycling uphill specialists.  相似文献   

7.
Background:One-legged pedaling is of interest to elite cyclists and clinicians.However,muscular usage in 1-legged vs.2-legged pedaling is not fully understood.Thus,the study was aimed to examine changes in leg muscle activation patterns between 2-legged and 1-legged pedaling.Methods:Fifteen healthy young recreational cyclists performed both 1-legged and 2-legged pedaling trials at about 30 Watt per leg.Surface electromyography electrodes were placed on 10 major muscles of the left leg.Linear envelope electromyography data were integrated to quantify muscle activities for each crank cycle quadrant to evaluate muscle activation changes.Results:Overall,the prescribed constant power requirements led to reduced downstroke crank torque and extension-related muscle activities(vastus lateralis,vastus medialis,and soleus)in 1-legged pedaling.Flexion-related muscle activities(biceps femoris long head,semitendinosus,lateral gastrocnemius,medial gastrocnemius,tensor fasciae latae,and tibialis anterior)in the upstroke phase increased to compensate for the absence of contralateral leg crank torque.During the upstroke,simultaneous increases were seen in the hamstrings and uni-articular knee extensors,and in the ankle plantarflexors and dorsiflexors.At the top of the crank cycle,greater hip flexor activity stabilized the pelvis.Conclusion:The observed changes in muscle activities are due to a variety of changes in mechanical aspects of the pedaling motion when pedaling with only 1 leg,including altered crank torque patterns without the contralateral leg,reduced pelvis stability,and increased knee and ankle stiffness during the upstroke.  相似文献   

8.
ABSTRACT

The main purpose of this study was to assess the acute effects of small changes in crank length (assumable by competitive cyclists) on metabolic cost and pedalling technique during submaximal cycling. Twelve amateur road cyclists performed three sets of submaximal pedalling (150, 200 and 250 W) at a constant cadence (91.3 ± 0.8 rpm) in a randomised order with three commonly used crank lengths, preferred (172.5–175 mm), +5 mm and ?5 mm. Energy cost of pedalling, kinetic and kinematic variables were simultaneously registered. Changes in crank length had no significant effect on heart rate (144 ± 13, 145 ± 12 and 145 ± 13 bpm, respectively) and gross efficiency (GE) (20.4 ± 2.1, 20.1 ± 2.2 and 20.3 ± 2.4%, respectively). A longer crank induced a significant (P < 0.05) reduction of positive impulse proportion (PIP) (0.9–1.9%) due to a greater maximum (1.0–2.3 N · m) and minimum torque (1.0–2.2 N · m). At the same time, the maximum flexion and range of motion of the hip and knee joints were significantly increased (1.8–3.4° and P < 0.05), whereas the ankle joint was not affected. In conclusion, the biomechanical changes due to a longer crank did not alter the metabolic cost of pedalling, although they could have long-term adverse effects. Therefore, in case of doubt between two lengths, the shorter one might be recommended.  相似文献   

9.
Physiological correlates to off-road cycling performance   总被引:1,自引:1,他引:0  
The aim of this study was to examine the relationships between maximal and submaximal tests for aerobic fitness and performance in an off-road cross-country circuit race. Thirteen competitive off-road male cyclists participated in the study. Peak oxygen uptake (VO2peak), peak power output, and lactate thresholds corresponding to 1 mmol x l(-1) above baseline (lactate threshold) and to 4 mmol x l(-1) (onset of blood lactate accumulation) were measured during an incremental cycling test. Race time and final ranking within the same group of cyclists were determined during a cross-country off-road competition. All correlations between the measured parameters of aerobic fitness and off-road cycling performance were significant, particularly between race time and physiological parameters scaled to body mass0.79 (r = -0.68 to -0.94; P < 0.05) and between final ranking and physiological parameters expressed relative to body mass0.79 (r = -0.81 to - 0.96; P < 0.001). Moreover, there was a large difference (effect sizes = 1.12-1.70) in all measured parameters of aerobic fitness between the group of six cyclists with a race time above the median and the group of six cyclists with a race time below the median (P < 0.05). In conclusion, the results of this study provide empirical support to the widespread use of these maximal (VO2peak, peak power output) and submaximal (lactate thresholds) parameters of aerobic fitness in the physiological assessments of off-road cyclists. Furthermore, our results suggest body size should be taken into account when evaluating such athletes.  相似文献   

10.
This investigation reports the effects of chewing caffeinated gum on race performance with trained cyclists. Twenty competitive cyclists completed two 30-km time trials that included a maximal effort 0.2-km sprint each 10-km. Caffeine (~3–4 mg · kg?1) or placebo was administered double-blind via chewing gum at the 10-km point following completion of the first sprint. Measures of power output, oxygen uptake, heart rate, lactate and perceived exertion were taken at set intervals during the time trial. Results indicated no substantial differences in any measured variables between caffeine and placebo conditions during the first 20-km of the time trial. Caffeine gum did however lead to substantial enhancements (mean ± 90% confidence limits (CLs)) in mean power during the final 10-km (3.8% ± 2.3%), and sprint power at 30-km (4.0% ± 3.6%). The increases in performance over the final 10-km were associated with small increases in heart rate and blood lactate (effect size of 0.24 and 0.28, respectively). There were large inter-individual variations in the response to caffeine, and apparent gender related differences in sprint performance. Chewing caffeine gum improves mean and sprint performance power in the final 10-km of a 30-km time trial in male and female cyclists most likely through an increase in nervous system activation.  相似文献   

11.
Effect of a carbohydrate mouthwash on running time-trial performance   总被引:1,自引:0,他引:1  
The aim of the present study was to determine the effect of a carbohydrate mouthwash on running time-trial performance. On two separate occasions, seven recreationally active males (VO2max 57.8 ml x kg(-1) x min(-1), s = 3.7) completed a preloaded (15 min at 65%VO2max) time-trial of 45 min in duration on a motorized treadmill. At 6-min intervals during the preload and time-trial, participants were given either a 6% maltodextrin, 3% lemon juice solution (carbohydrate trial) or a 3% lemon juice placebo mouthwash (placebo trial) in a double-blind, randomized crossover design. Heart rate, oxygen consumption (VO2), respiratory exchange ratio (RER), and ratings of perceived exertion (RPE) were measured during the preload, and blood glucose and lactate were measured before and after the preload and time-trial. There were no significant differences in distance covered between trials (carbohydrate: 9333 m, s = 988; placebo: 9309 m, s = 993). Furthermore, there were no significant between-trial differences in heart rate and running speed during the time-trial, or VO2, RER or RPE during the preload. Blood lactate and glucose increased as a result of the exercise protocol, with no between-trial differences. In conclusion, there was no positive effect of a carbohydrate mouthwash on running performance of approximately 1 h duration.  相似文献   

12.
Diurnal variation in cycling performance: influence of warm-up   总被引:2,自引:0,他引:2  
We examined the effects of time of day on a cycling time trial with and without a prolonged warm-up, among cyclists who tended towards being high in "morningness". Eight male cyclists (mean +/- s: age = 24.9 +/- 3.5 years, peak power output = 319 +/- 34 W, chronotype = 39 +/- 6 units) completed a 16.1-km time trial without a substantial warm-up at both 07:30 and 17:30 h. The time trial was also completed at both times of day after a 25-min warm-up at 60% of peak power. Power output, heart rate, intra-aural temperature and category ratings of perceived exertion (CR-10) were measured throughout the time trial. Post-test blood lactate concentration was also recorded. Warm-up generally improved time trial performance at both times of day (95% CI for improvement = 0 to 30 s), but mean cycling time was still significantly slower at 07:30 h than at 17:30 h after the warm-up (95% CI for difference = 33 to 66 s). Intra-aural temperature increased as the time trial progressed (P < 0.0005) and was significantly higher throughout the time trials at 17:30 h (P = 0.001), irrespective of whether the cyclists performed a warm-up or not. Blood lactate concentration after the time trial was lowest at 07:30 h without a warm-up (P = 0.02). No effects of time of day or warm-up were found for CR-10 or heart rate responses during the time trial. These results suggest that 16.1-km cycling performance is worse in the morning than in the afternoon, even with athletes who tend towards 'morningness', and who perform a vigorous 25-min warm-up. Diurnal variation in cycling performance is, therefore, relatively robust to some external and behavioural factors.  相似文献   

13.
The aim of this study was to examine heart rate, blood lactate concentration and estimated energy expenditure during a competitive rugby league match. Seventeen well-trained rugby league players (age, 23.9 +/- 4.1 years; VO2max, 57.9 +/- 3.6 ml x kg(-1) x min(-1); height, 1.82 +/- 0.06 m; body mass, 90.2 +/- 9.6 kg; mean +/- s) participated in the study. Heart rate was recorded continuously throughout the match using Polar Vantage NV recordable heart rate monitors. Blood lactate samples (n = 102) were taken before the match, after the warm-up, at random stoppages in play, at half time and immediately after the match. Estimated energy expenditure during the match was calculated from the heart rate-VO2 relationship determined in laboratory tests. The mean team heart rate (n = 15) was not significantly different between halves (167 +/- 9 vs 165 +/- 11 beats x min(-1)). Mean match intensity was 81.1 +/- 5.8% VO2max. Mean match blood lactate concentration was 7.2 +/- 2.5 mmol x l(-1), with concentrations for the first half (8.4 +/- 1.8 mmol x l(-1)) being significantly higher than those for the second half (5.9 +/- 2.5 mmol x l(-1)) (P<0.05). Energy expenditure was approximately 7.9 MJ. These results demonstrate that semi-professional rugby league is a highly aerobic game with a considerable anaerobic component requiring high lactate tolerance. Training programmes should reflect these demands placed on players during competitive match-play.  相似文献   

14.
Ghrelin is a hormone that stimulates hunger. Intense exercise has been shown to temporarily suppress hunger after exercise. In the present study, we investigated whether post-exercise hunger suppression is mediated by reduced plasma total ghrelin concentrations. Nine men and nine women participated in the study. Their mean physical characteristics were as follows: age 24.8 (s(x) = 0.9) years, body mass index 22.9 (s(x) = 0.6) kg x m(-2), maximal oxygen uptake (VO(2max)) 57.7 (s(x) = 2.2) ml x kg(-1) x min(-1). The participants completed two 3-h trials (exercise and control) on separate days in a randomized balanced design after overnight fasts. The exercise trial involved a 1-h treadmill run at 73.5% of VO(2max) followed by 2 h of rest. The control trial consisted of 3 h of rest. Blood samples were collected at 0, 0.5, 1, 1.5, 2, and 3 h. Total ghrelin concentrations were determined from plasma. Hunger was assessed following blood sampling using a 15-point scale. The data were analysed using repeated-measures analysis of variance. Hunger scores were lower in the exercise trial than in the control trial (trial, P = 0.009; time, P < 0.001; trial x time, P < 0.001). Plasma total ghrelin concentrations did not differ between trials. These findings indicate that treadmill running suppresses hunger but this effect is not mediated by changes in plasma total ghrelin concentration.  相似文献   

15.
16.
It has previously been shown that measurement of the critical speed is a non-invasive method of estimating the blood lactate response during exercise. However, its validity in children has yet to be demonstrated. The aims of this study were: (1) to verify if the critical speed determined in accordance with the protocol of Wakayoshi et al. is a non-invasive means of estimating the swimming speed equivalent to a blood lactate concentration of 4 mmol x l(-1) in children aged 10-12 years; and (2) to establish whether standard of performance has an effect on its determination. Sixteen swimmers were divided into two groups: beginners and trained. They initially completed a protocol for determination of speed equivalent to a blood lactate concentration of 4 mmol x l(-1). Later, during training sessions, maximum efforts were swum over distances of 50, 100 and 200 m for the calculation of the critical speed. The speeds equivalent to a blood lactate concentration of 4 mmol x l(-1) (beginners = 0.82 +/- 0.09 m x s(-1), trained = 1.19 +/- 0.11 m x s(-1); mean +/- s) were significantly faster than the critical speeds (beginners = 0.78 +/- 0.25 m x s(-1), trained = 1.08 +/- 0.04 m x s(-1)) in both groups. There was a high correlation between speed at a blood lactate concentration of 4 mmol x l(-1) and the critical speed for the beginners (r= 0.96, P < 0.001), but not for the trained group (r= 0.60, P> 0.05). The blood lactate concentration corresponding to the critical speed was 2.7 +/- 1.1 and 3.1 +/- 0.4 mmol x l(-1) for the beginners and trained group respectively. The percent difference between speed at a blood lactate concentration of 4 mmol x l(-1) and the critical speed was not significantly different between the two groups. At all distances studied, swimming performance was significantly faster in the trained group. Our results suggest that the critical speed underestimates swimming intensity corresponding to a blood lactate concentration of 4 mmol x l(-1) in children aged 10-12 years and that standard of performance does not affect the determination of the critical speed.  相似文献   

17.
Purpose: The purpose of this study was to investigate whether loads carried in a backpack, with a load mass ranging from 0 to 20?kg, causes respiratory muscle fatigue. Methods: Eight males performed four randomised load carriage (LC) trials comprising 60?min walking at 6.5?km?h?1 wearing a backpack of either 0 (LC0), 10 (LC10), 15 (LC15) or 20?kg (LC20). Inspiratory (PImax) and expiratory (PEmax) mouth pressures were assessed prior to and immediately following each trial. Pulmonary gas exchange, heart rate (HR), blood lactate and glucose concentration and perceptual responses were recorded during the first and final 60?s of each trial. Results: Group mean PImax and PEmax were unchanged following 60-min load carriage in all conditions (p?>?.05). There was an increase over time in pulmonary gas exchange, HR and perceptions of effort relative to baseline measures during each trial (p?p?>?.05). Conclusions: These findings indicate that sub-maximal walking with no load or carrying 10, 15 or 20?kg in a backpack for up to 60?min does not cause respiratory muscle fatigue despite causing an increase in physiological, metabolic and perceptual parameters.  相似文献   

18.
The aim of this study was to establish the relationship between selected physiological variables of rowers and rowing performance as determined by a 2000 m time-trial on a Concept II Model B rowing ergometer. The participants were 13 male club standard oarsmen. Their mean (+/- s) age, body mass and height were 19.9+/-0.6 years, 73.1+/-6.6 kg and 180.5+/-4.6 cm respectively. The participants were tested on the rowing ergometer to determine their maximal oxygen uptake (VO2max), rowing economy, predicted velocity at VO2max, velocity and VO2 at the lactate threshold, and their velocity and VO2 at a blood lactate concentration of 4 mmol x l(-1). Percent body fat was estimated using the skinfold method. The velocity for the 2000 m performance test and the predicted velocities at the lactate threshold, at a blood lactate concentration of 4 mmol x l(-1) and at VO2max were 4.7+/-0.2, 3.9+/-0.2, 4.2+/-0.2 and 4.6+/-0.2 m x s(-1) respectively. A repeated-measures analysis of variance showed that the three predicted velocities were all significantly different from each other (P<0.05). The VO2max and lean body mass showed the highest correlation with the velocity for the 2000 m time-trial (r = 0.85). A stepwise multiple regression showed that VO2max was the best single predictor of the velocity for the 2000 m time-trial; a model incorporating VO2max explained 72% of the variability in 2000 m rowing performance. Our results suggest that rowers should devote time to the improvement of VO2max and lean body mass.  相似文献   

19.
Eight trained male cyclists who competed regularly in track races, were studied under control, alkalotic (NaHCO3) and placebo (CaCO3) conditions in a laboratory setting to study the effect of orally induced metabolic alkalosis on 60 s anaerobic work and power output on a bicycle ergometer. Basal, pre- and post-exercise blood samples in the three conditions were analysed for pH, pCO2, pO2, bicarbonate, base excess and lactate. All blood gas measurements were within normal limits at basal levels. There were significant differences in the amount of work produced, and in the maximal power output produced by the cyclists in the experimental condition when compared to the control and placebo conditions (P less than 0.01). The post-exercise pH decreased in all three conditions (P less than 0.05) and post-exercise pCO2 increased significantly in the alkalosis trial (P less than 0.01). In the alkalotic condition, the pre-exercise base excess and HCO3- levels were both higher (P less than 0.05) than the basal levels, suggesting that the bicarbonate ingestion had a significant increase in the buffering ability of the blood. Post-exercise lactate levels were significantly higher (P less than 0.05) after the alkalotic trial when compared to the other two conditions, immediately post-exercise and for the next 3 min. Post-exercise lactate levels were higher than basal or pre-exercise levels (P less than 0.001). This was true immediately post-exercise and for the next 5 min. The results of this study suggest that NaHCO3 is an effective ergogenic aid when used for typically anaerobic exercise as used in this experiment. We feel that this ergogenic property is probably due to the accelerated efflux of H+ ions from the muscle tissue due to increased extracellular bicarbonate buffering.  相似文献   

20.
The purpose of this study was to compare submaximal physiological responses and indices of mechanical efficiency between asynchronous and synchronous arm ergometry. Thirteen wheelchair-dependent trained athletes performed eight steady-state incremental bouts of exercise (0 to 140 W), each lasting 4 min, using synchronous and asynchronous arm-cranking strategies. Physiological measures included oxygen uptake (VO2), heart rate, and blood lactate concentration. The power outputs corresponding to fixed whole blood lactate concentrations of 2.0 to 4.0 mmol x l(-1) were calculated using linear interpolation. Mechanical efficiency indices - gross efficiency, net efficiency, and work efficiency - were also calculated. An analysis of variance with repeated measures was applied to determine the effect of crank mode on the physiological parameters. Oxygen uptake was on average 10% lower (P < 0.01), and both net efficiency (P < 0.01) and gross efficiency (P < 0.01) were higher, during the asynchronous strategy at both 60 and 80 W (gross efficiency: 16.9 +/- 2.0% vs. 14.7 +/- 2.4% and 17.5 +/- 1.8% vs. 15.9 +/- 2.6% at 60 and 80 W respectively). There were no differences in heart rate, blood lactate concentration or power output at either of the blood lactate reference points between the asynchronous and synchronous strategies (P > 0.05). In conclusion, test specificity is an important consideration. If a synchronous strategy is to be adopted, it is likely to result in lower efficiency than an asynchronous strategy. The exercise testing scenario may help dictate which method is ultimately chosen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号