首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
裘良 《中学教研》2007,(2):37-38
文献[1]提供了一道奥赛题,这是一个三元对称不等式:题目设正实数 a,b,c 满足 a b c=1.证明:10(a~3 b~3 c~3)-9(a~5 b~5 c~5)≥1.(1)1 不等式的另证引理已知函数 f(x)=x 3x~2-x~3-3x~4,则当1≥x y≥x≥y≥0时,f(x)≥f(y)≥0.(2)证明当1≥x y≥x≥y≥0时,首先f(y)=y 3y~2-y~3-3y~4=y(1 3y)(1-y~2)≥0;其次f(x)-f(y)=(x-y) 3(x~2-y~2)-(x~3-y~3)-3(x~4-y~4)=(x-y){1-(x~2 xy y~2) 3(x y)[1-(x~2 y~2)]}.因为 x-y≥0,又1-(x~2 xy y~2)≥(x y)~2-(x~2 xy y~2)=xy≥0,1-(x~2 y~2)≥(x y)~2-(x~2-y~2)=2xy≥0,所以 f(x)-f(y)≥0,即 f(x)≥f(y)≥0.不等式《1)的证明为方便起见,记f(x)=x 3x~2-x~3-3x~4  相似文献   

2.
<正>一、试题呈现(2015年浙江高考题)若实数x,y满足x~2+y~2≤1,则|2x+y-2|+|6-x-3y|的最小值为_.二、试题解析这是2015年浙江省高考数学理科卷的第14题,问题要求的是在约束条件(实数x,y满足x~2+y~2≤1)下,以x,y为变量的二元函数(|2x+y-2|+|6-x-3y|)的最小值.问题  相似文献   

3.
错在哪里     
题:已知两条直线l_1:x+(1+m)y=2-m,l_2:2mx+4y=-16。(1)当m为何值时,l_1与l_2相交;(2)求直线l_1和l_2交点的轨迹。解 (1)将两直线的方程组成方程组 x+(1+m)y=2-m 2mx+4y=-16 这时 A_1/A_2=1/2m,B_1/B_2=1+m/4。当A_1/A_2≠B_1/B_2 解得m≠1或m≠-2 (2)将两直线的方程组成方程组,消去参数m,得:x~2+xy-2y~2-2x-10y-8=0 即(x-y-4)(x+2y+2)=0  相似文献   

4.
一、纯粹利用判别式求函数y=ax~2+bx+c/mx~2+nx+l值域的可靠性。 [例1]求函数y=5/2x~2+5x+3的值域。解:把原式变形成2yx~2+5yx+3y-5=0 ①∵ x为实数:△=(5y)~2-4(2y)(3y-5)≥0 解得 y≥0或y≤-40 即所求值域为:{y∶y≥0}∪{y∶y≤-40}。但由原函数显然可知y≠0,所以上面求得的值域并不可靠。 [例2]求函数y=x~2-x-2/2x~2-6x+4的值域。解:把原式变形成 (2y-1)x~2+(1-6y)x+4y+2=0 ②∵ x为实数,∴△=(1-6y)~2-4(2y-1)(4y+2)=(2y-3)~2≥0 ∵所求值域为y∈R事实上,y=(x~2-x-2)/(2x~2-6x+4)=((x-2)(x+1))/(2(x-2)(x-1))  相似文献   

5.
1.若遇a≤x~2 y~2≤b(a,b∈R~ ),可作代换x=t·cosφ,y=tsinφ,其中a~(1/2)≤t≤b~(1/2) 例1 已知1≤x~2 y~2≤2,求w=x~2 xy y~2的最值. 解:∵1≤x~2 y~2≤2,∴设x=tcosθ,y=tsinθ,其中1≤t≤2~(1/2),∴w=t~2cos~2θ t~2cosθsinθ t~2sin~2θ=t~2·(1 (1/2)sin2θ),而(1/2)≤1 sin2θ≤(3/2),∴(1/2)≤w≤3. 2.若遇b~2x~2 a~2y~2=a~2b~2(a,b∈R~ ),可作代换x=acosθ,y=bsinθ(此处要注意解析几何中椭圆、双曲线的参数方程的应用) 例2 已知x、y满足x~2 4y~2=4,求w=x~2 2xy 4y~2 x 2y的最值.  相似文献   

6.
一函数 1.变量x和y有下述关系,问y是x的函数吗? ①x在[0,+∞)中变化,y~2=x. ②x在[0,+∞)中变化,y=x~(1/2). ③x在(-∞,+∞)中变化,y=3. 2.求下列函数的定义城: ①y=1/(x~2+1) ②y=2x/(x~2-3x+2) ③y=(x+1/x-1)~(1/2) ④f(x)={sinx,x≥0,1/(x+1),-1相似文献   

7.
一类五次系统的中心焦点判定   总被引:1,自引:0,他引:1  
给出五次系统x=λx-y+yR_2+xR_4,y=x+λy-xR_2+yR_4,R_2=b_1x~2++b_2xy+B_3y~2,R_4=a_4x~4+a_2x~3y+a_1xy~3+a_0y~4,在O(0,0)的各阶焦点量和O为中心的充要条件.  相似文献   

8.
<正>在高中学习圆的知识后,经常会遇到下面的这类问题:引例已知x~2+y~2-4x+1=0,(1)求■的取值范围;(2)求y-x的取值范围;(3)求x~2+y~2的取值范围.解法1 (几何法) x~2+y~2-4x+1=0变形为(x-2)2+y~2=3记为圆C.(1)■的几何意义为圆C上任意一点P(x,y)  相似文献   

9.
倒数方程是一种特殊的高次方程,它有四种基本类型,每种类型都有常规的解法。本文就从四个方面对这个问题作以综述。一、第一类型的偶次倒数方程的解法例1、解方程x~4+7x~3+14x~2+7x+1=0解:显然x=0不是方程的根,两边同除以x~2,得(x~2+(1/x~2))+7(x+(1/x))+14=0令x+(1/x)=y,测x~2+(1/x~2)=y~2-2测有y~2+7y+12=0(y+3)(y+4)=0∴y=3或y=4当x+(1/x)=-3时,x~2+3x+1=0  相似文献   

10.
1981年12期数学通报《几种类型的不等式证明》一文中(二): 已知条件为线性方程形式的不等式证明(即条件x+y+z+…A,A为常数)。 4:若x+y+z=1,试证x~2+y~2+z~2≥1/3证明:令x=1/3-t,y=1/3-2t,z=1/3+3t(t为实数)。 x~2+y~2+z~2=[(1/3)-t]~2+[(1/3)-2t]~2+[(1/3)-3t]~2 =1/9-(2/3)t+t~2+1/9-(4/3)t+4t~2+1/9+2t+9t~2 =1/3+14t~2≥1/3 (∵t为实数)。 当t=0时,即x=y=z=1/3时,上式等号成立。  相似文献   

11.
题 (1993年全国高中数学联赛试题)设实数x、y满足4x~2-5xy4y~2=5,设S=x~2 y~2,则(1/S_(max)) (1/(S_(min))=____·(答:8/5) 贵刊文[1]推广为:设实数x、y满足ax~2-(a 1)xy ay~2=a 1,(其中a>1或a<-(1/3),a≠-1),设s=x~2 y~2,则(1/S_(max)) (1/S-(min))=2a/(a 1) 本文将在文[1]的基础上作一点改进,给出更为一般的推广命题的两种解法. 命题 实数x、y满足Ax~2 Bxy cy~2=D(其中B~2<4AC,D>0),设S=x~2 y~2,则(1/S_(max)) (1/S_(min))=(A C)/D.(1)×S-(2)×D得(AS-D)x~2 BSxy (CS-D)y~2=0. 由题设知y≠0,∴(AS-D)(x/y)~2 BS(x/y) (CS-D)=0,∵x/y∈R,∴△=(BS)~2-4(AS-D)(CS-D)≥0. 即(B~2-4AC)S~2 4D(A C)S-4D~2≥0.又因B~2-4Ac<0,若记S_1相似文献   

12.
文[1]证明了一个不等武:0≤x,y,x_1,y_1≤1,x x_1=1,y y_1=1,则L_2=(x~2 y~2)~(1/2) (x~2_1 y~2)~(1/2) (x~2 y~2_1)~(1/2) (x~2_1 y~2_1)~(1/2)≤2 2~(1/2),并根据L_2的几何意义提出了猜想.设0≤z,y,z,x_1,y_1,z_1≤1,x x_1=1,y y_1=1,z z_1=1,则L_3=(x~2 y~2 z~2)~(1/2) (x~2_1 y~2 z~2)~(1/2) (x~2_1 y~2_1 z~2)~(1/2) (x~2 y~2_1 z~2)~(1/2) (x~2 y~2 z~2_1)~(1/2) (x~2_1 y~2 z~2_1)~(1/2) (x~2 y~2_1 z~2_1)~(1/2)  相似文献   

13.
一、三角函数取值范围的方程求法我们知道在sin~2a+cos~2α=·1中,运用换元,令cosα=x,sinα=y,就是x~2+y2=1.这样就可把求t=F(cosα,sinα)的范围化为在方程组{x~2+y~2}=1F(x,y)=t},中求t的取值范围.例1已知sinαcosβ=1/2,求t=cosαsi的取值范围.解令cosα=x,sinα=y,cosβ=m,sinβ=n,得方程组(?)消去m,n,y(过程略)得4x~4-(4t~2+3)x~2+4t~2=0(0≤x~2≤1)⑤在⑤中解出t~2求值域或解出x~2求定义域或用二次方程实根的分布方法可得0≤t2≤1/4,所以一1/2≤t≤1/2.例2已知sinα+sinβ=1,求t=cosαt+cosβ的取值  相似文献   

14.
椭圆方程x~2/b~2 y~2/b~2=1中x,y的范围-a≤x≤a,-b≤y≤b;双曲线壬—长二l中x的范围x≥a或x≤-a;抛物线方程y~2=2px (p>0)中x的范围x≥0,是圆锥曲线的最基本最重要的几何性质,由于课本上对于它们的应用几乎没有介绍,因此,这些性质往往不被人们所重视,以至不能发挥其在解题中的作用.其实,许多数学题用圆锥曲线的范围来解,具有特殊的功效,而且,有些问题若不注意圆锥曲线范围的挖掘,则会造成解题的错误.本文就圆锥曲线的范围在解题中的应用,分类归纳如下,供教学参考. 1 求解有关代数最值(值域)问题 例1 当点(x,y)在曲线(x-5)~2/16 y~2/9=1上变动时,代数式x/16 y/9所能取到的最大值与最小值之和是( ).(1991年上海市高三数学竞赛题) 解 已知椭圆(x-5)~2/16 y~2/9=1中x的范围是-4≤x-5≤4,即1≤x≤9,则 t=x~2/16 y~2/9=x~2/16 1-(x-5)~2/16=  相似文献   

15.
正第49届国际数学奥林匹克数学竞赛第2题是:设实数x,y,z都不等于1,满足xyz=1,则x~2/(1-x)~2+y~2/(1-y)~2+z~2/(1-z)~2≥1.本文给出上述不等式的一个类比:命题1设实数x,y,z都不等于-1,且xyz=1,则x~2/(1+x)~2+y~2/(1+y)~2+z~2/(1+z)~2≥3/4.  相似文献   

16.
有条件限制的双变元取值问题,涉及领域宽,知识面广,需要善于转化,可以通过消元转化为函数求值域问题,但是当题目具有一定特殊形式对,也可通过另外两种常用方法转化.一、消元变函数例1 已知3x~2+2y~2=6x,求 u=x~2+y~2的取值范围.分析:为了求出 u 的范围,需将变量 x,y 用一个变量 x 表示出 u,此时要注意 x 的范围.解:由3x~2+2y~2=6x,得y~2=(1/2)(6x-3x~2)∵y~2≥0,∴x∈[0,2]u=x~2+y~2=x~2+(1/2)(6x-3x~2)=-(1/2)(x-3)~2+(9/2)结合二次函数的图象可知,u∈[0,4]  相似文献   

17.
通常我们求二元函数s=f(x,y)的最值,一般具有约束条件g(x,y)=0(或g(x,y)≤0),这类二元函数的最值称二元函数的条件最值。一般采用消元法,即从s=f(x,y)中消去一个变量,化为一元函数后,使用判别式法,不等式法,几何法等解之,但必须注意在约束条件下的x,y的取值范围对结果的影响。 1、函数法 例1已知x+2y=4,求x~2+y~2的最小值。 解:由x+2y=4,得x=4-2y,代入s= x~2+y~2中,得s=(4-2y)~2+y~2=5y~2-16y+16=5(y-8/5)~2+16/5。  相似文献   

18.
早在初中代数课上,就已经知道了两数和的平方公式 (x y)~2=x~2 2xy y~2(1)、这一公式的应用是极其广泛的。在这里,我们介绍它的部分应用。 一、推证公式问题 以下乘法公式 (x-y)~2=x~2-2xy y~2 (x y)(x-y)=x~2-y~2 (x y)~3=x~3 3x~2y 3xy~2 y~3 (x-y)~3=x~3-3x~2y 3xy~2-y~3 (x-y)(x~2 xy y~2)=x~3-y~3 (x y)(x~2-xy y~2)=X~3 y~3等都可运用公式(1)来推导 例1、求证:(x y)(x-y)=x~2=y~2 证:令a=(x y)/2,b=(x-y)/2, 则两数x、y的平方差,x~2-y~2=(a b)~2-(a-b)~2运用公式(1)有x~2-y~2=4ab据假设条件,得x~2-y~2=4(x y)/2·(x-y)/2,即x~2-y~2=(x y)(x-y) 例2、求证:(x-y)~3=x~3-3x~2y 3xy~2-y~3 证:将上式右端进行配方变换即得证 x~3-3x~2y 3xy~2-y~3 =x~3-2x~2y xy~2-x~2y 2xy~2-y~3 =x(x-y)~2-y(x-y)~2 =(x-y)~3 类似地,乘法公式都可用公式(1)来推导,此外,还可推证一些多项因式的乘法  相似文献   

19.
灵活运用代数式x~2 xy y~2及其三个变形式x~2 xy y~2=(x (y/2))~2 (3~(1/3)y)~2≥0,x~ xy y~2=x~2 y~2-2xycos120°,x~2 xy y~2=(x-y)~2 3xy≥3xy能使某些问题化生为熟、化难为易,现以高考、竞赛题为例说明如下。  相似文献   

20.
一类二元函数的条件最值,如能进行适当的齐次代换转化为分式函数,利用判别式法易于简捷巧妙地获解。例1 已知|3x-y|≥4,求S=2x~2-xy y~2的最小值,并求S取最小值时的x、y值。解:显然x,y不全为零,不妨设x≠0,令t=y/x。 u=S/(3x-y)~2=(2x~2-xy y~2)/(9x~2-6xy y~2)=(2-t t~2)/(9-6t t~2)化为(1-u)t~2 (6u-1)t (2-9u)=0其△=(6u-1)~2-4(1-u)(2-9u)=32u-7≥0,解得u≥7/32。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号