首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper addresses synchronization problem for discrete-time complex dynamical networks with interval time-varying delays. In order to achieve the synchronization, a feedback controller subjected to randomly occurring perturbations will be considered. The randomly occurring perturbations are assumed to belong to the Binomial sequence. By constructing a suitable Lyapunov–Krasovskii functional, and utilizing reciprocally convex approach and Finsler?s lemma, the synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. The networks are represented by the use of Kronecker product technique. The effectiveness of the proposed methods will be verified via numerical examples.  相似文献   

2.
This note focuses on the robust stabilization of discrete-time fuzzy uncertain systems with time-varying delays under a delayed nonparallel distributed compensation scheme. The key idea is twofold: first, the linear matrix inequalities (LMI) proposed here are shown to generalize some previous similar results available in recent literature, and second, the design of control parameters is decoupled from the proposed fuzzy-basis dependent Lyapunov–Krasovskii functional (FBDLKF) by means of Finsler?s lemma. Finally, a numerical example is provided to illustrate the effectiveness of this method.  相似文献   

3.
This paper presents new parameterized sampled-data stabilization criteria using affine transformed membership functions for T-S fuzzy systems. To deal with the sampled control input having aperiodic sampling intervals, the proposed method adopts new looped functionals, and employs a modified free weighting matrix inequality. A relaxed condition for the controller design is derived by formulating the constraint conditions of the membership functions in the proposed controller with affinely matched weighting parameter vectors. Based on a newly devised lemma for handling affinely matched vectors, the stabilization and guaranteed cost performance criteria are given in terms of linear matrix inequalities (LMIs). The superiority of the presented method is demonstrated via significantly improved results in numerical examples.  相似文献   

4.
This paper investigates an event-triggered control design approach for discrete-time linear parameter-varying (LPV) systems under control constraints. The proposed conditions can simultaneously design a parameter-dependent dynamic output feedback controller and an event generator, ensuring the closed-loop system’s regional asymptotic stability. Based on the Lyapunov stability theory, these conditions are given in terms of linear matrix inequalities (LMIs). Moreover, using some proposed optimization procedures, it is possible to minimize the number of sensor transmissions, maximize the estimation of the region of attraction of the origin, and incorporate optimal control criteria into the formulation. Through numerical examples, some comparisons with other approaches in the literature evidence the proposed technique’s efficacy.  相似文献   

5.
This paper investigates average consensus problem in networks of continuous-time agents with delayed information and jointly-connected topologies. A lemma is derived by extending the Barbalat's Lemma to piecewise continuous functions, which provides a new analysis approach for switched systems. Then based on this lemma, a sufficient condition in terms of linear matrix inequalities (LMIs) is given for average consensus of the system by employing a Lyapunov approach, where the communication structures vary over time and the corresponding graphs may not be connected. Finally, simulation results are provided to demonstrate the effectiveness of our theoretical results.  相似文献   

6.
This paper investigates the problem of global exponential stability for neutral systems with interval time varying delays and nonlinear perturbations. It is assumed that the state delay belongs to a given interval, which means that both the lower and upper bounds of the time-varying delay are available. The uncertainties under consideration are norm-bounded. Based on the Lyapunov–Krasovskii stability theory, delay-partitioning technique and lower bounds lemma, less conservative delay-dependent exponential stability criteria are derived in terms of linear matrix inequalities (LMIs) with fewer decision variables than the existing ones. Numerical examples are given to show the effectiveness of the proposed method.  相似文献   

7.
This paper proposes new delay-dependent synchronization criteria for coupled stochastic neural networks with time-varying delays and leakage delay. By constructing a suitable Lyapunov–Krasovskii's functional and utilizing Finsler's lemma, novel synchronization criteria for the networks are established in terms of linear matrix inequalities (LMIs) which can be easily solved by using the LMI toolbox in MATLAB. Three numerical examples are given to illustrate the effectiveness of the proposed methods.  相似文献   

8.
This paper presents new less conservative stability analysis conditions for Takagi–Sugeno fuzzy systems subject to interval time-varying delay. The methodology is based on the direct Lyapunov method allied with an appropriate Lyapunov–Krasovskii functional choice and the use of the integral inequalities, Finsler lemma, Newton–Leibniz formula manipulations and convex combination properties. Particularly, the main result differs from previous ones since the positiveness of the Lyapunov–Krasovskii functional is guaranteed by new relaxed conditions. Two examples illustrate the effectiveness of the proposed methodology.  相似文献   

9.
This paper proposes an active resilient control strategy for singular networked control systems with external disturbances and missing data scenario based on sampled-data scheme. To characterize the missing data scenario, a stochastic variable satisfying Bernoulli distributed white sequence is introduced. Based on this scenario, in this paper, two different models are proposed. For both the models, by using Lyapunov–Krasovskii functional approach, which fully uses the available information about the actual sampling pattern, some sufficient conditions in terms of linear matrix inequalities (LMIs) are separately obtained to guarantee that the resulting closed-loop system is admissible and strictly dissipative with a prescribed performance index. In particular, Jensen’s and Wirtinger based integral inequalities are employed to simplify the integral terms which appeared in the derivation of stabilization results. Then, if the obtained LMIs are feasible, the corresponding parameters of the designed resilient sampled-data controller are determined. Finally, two numerical examples are presented to demonstrate the effectiveness of the proposed control design technique.  相似文献   

10.
This paper is concerned with control design for a generalized Takagi–Sugeno fuzzy system. The Takagi–Sugeno fuzzy system generally describes nonlinear systems by employing local linear system representations, while a generalized fuzzy system to be considered in this paper describes even a wider class of nonlinear systems by representing locally nonlinear systems. For such a generalized system, a stabilizing controller design method is proposed by introducing a new class of non-PDC controllers. A non-PDC controller is a generalized controller of PDC one, which is a traditional fuzzy controller. Stabilizing controller design conditions are given in terms of a set of linear matrix inequalities (LMIs), which are easily numerically solvable. A relaxation method is used to reduce the conservatism of design conditions. Finally, numerical examples are given to illustrate our nonlinear control design and to show the effectiveness over other existing results.  相似文献   

11.
In this paper, we design observer-based feedback control for a class of linear systems. The novelty of the paper comes from the consideration of an augmented weighted based integral inequality involving quadratic functions with an exponential term which is less conservative than the celebrated weighted integral inequality employed in the context of time-delay systems. By using appropriately chosen Lyapunov–Krasovskii functional (LKF), together with the derived integral inequality, a new sufficient condition for exponential stability in terms of linear matrix inequalities (LMIs) is proposed for the delayed linear systems with state feedback control. Finally, the applicability and superiority of the proposed theoretical results over the existing ones are analyzed in virtue of numerical examples.  相似文献   

12.
This paper investigates the problems of stochastic admissibility and extended dissipativity analysis as well as state feedback controller design for interval type-2 singular systems with nonhomogeneous Markovian switching. By utilizing matrix decomposition technique to deal with the time-dependent transition rates, a sufficient condition is established to guarantee that the systems under consideration are regular, impulse-free, stochastically asymptotically stable and extended dissipative. For developing the state feedback controller in light of the obtained sufficient condition, a novel lemma is proposed inspired by Projection lemma, based on which an approach of controller design is provided. It should be pointed out that no conservatism is introduced in controller design due to the sufficiency and necessity of this lemma. Finally, simulation examples are provided to show the effectiveness of the proposed approach.  相似文献   

13.
14.
This paper addresses the problem of decentralized guaranteed cost stabilization (DGCS) of large-scale systems with delays both in the isolated subsystems and interconnections based on reduced-order observers. Sufficient conditions for the existence of delay-independent decentralized guaranteed cost controller (DGCC) are given in terms of linear matrix inequalities (LMIs). Furthermore, a convex optimization problem with LMIs constraints is formulated to design the optimal DGCC which minimizes the guaranteed cost of the closed-loop large-scale systems. Finally, a simulation is performed to show the effectiveness of the proposed control scheme.  相似文献   

15.
具有输入时滞的关联不确定大系统的分散鲁棒控制   总被引:4,自引:0,他引:4  
研究了一类同时具有输入时滞以及不确定参数的关联大系统的稳定性问题.基于所谓的还原法,给出一种新的状态反馈控制器的设计方法,这种方法的不同之处在于利用了时延的大小以及反馈控制的历史信息.根据Lyapunov稳定性理论得到了系统在控制器作用下稳定的充分条件,所有条件都化成可解的标准线性矩阵不等式(LMIs)形式.最后给出了一个数值例子,说明结果的可行性,并和一般无记忆的控制器相比较,说明建立的控制器有着更好的性能.  相似文献   

16.
Convex conditions, expressed as linear matrix inequalities (LMIs), for stability analysis and robust design of uncertain discrete-time systems with time-varying delay are presented in this paper. Delay-dependent and delay-independent convex conditions are given. This paper is particularly devoted to the synthesis case where convex conditions are proposed to consider maximum allowed delay interval. It is also presented some relaxed LMIs that yield less conservative conditions at the expense of increasing the computational burden. Extensions to cope with decentralized control and output feedback control are discussed. Numerical examples, including real world motivated models, are presented to illustrate the effectiveness of the proposed approach.  相似文献   

17.
This paper concerns the fault detection (FD) problem for a class of discrete-time systems subject to data missing and randomly occurring nonlinearity modeled by two independent Bernoulli distributed random variables. We propose to design a set of fault detection filters, or residual generation systems, corresponding to each of the fault components, to guarantee that each subsystem is mean square stable and satisfies a prescribed disturbance attenuation level. Sufficient conditions are established in the form of linear matrix inequalities (LMIs). System faults can be effectively detected by generating the residues and comparing them with the dynamic fault thresholds. A quadrotor vehicle example with faults on angles and angular rates illustrates and verifies the effectiveness of the proposed algorithm.  相似文献   

18.
In this paper, the leader-following bipartite consensus is investigated for a group of uncertain multiple Euler–Lagrange systems with disturbances. An innovative adaptive distributed observer is developed without requiring that followers surely acquire the leader’s auxiliary state and system matrix. A directed signed network satisfying the principle of structural balance is exploited to describe the interaction among agents. Then a novel bipartite consensus control protocol is proposed to solve the bipartite consensus problem of multiple Euler–Lagrange systems. The theoretical proof is provided via constructing a Lyapunov function and applying Barbalat lemma to analyze the convergence problem. Finally, a numerical simulation is utilized to demonstrate the effectiveness of proposed method.  相似文献   

19.
In this paper, we consider the problem of mixed H and passivity control for a class of stochastic nonlinear systems with aperiodic sampling. The system states are unavailable and the measurement is corrupted by noise. We introduce an impulsive observer-based controller, which makes the closed-loop system a stochastic hybrid system that consists of a stochastic nonlinear system and a stochastic impulsive differential system. A time-varying Lyapunov function approach is presented to determine the asymptotic stability of the corresponding closed-loop system in mean-square sense, and simultaneously guarantee a prescribed mixed H and passivity performance. Further, by using matrix transformation techniques, we show that the desired controller parameters can be obtained by solving a convex optimization problem involving linear matrix inequalities (LMIs). Finally, the effectiveness and applicability of the proposed method in practical systems are demonstrated by the simulation studies of a Chua’s circuit and a single-link flexible joint robot.  相似文献   

20.
This paper is devoted to stability analysis of discrete-time delay systems based on a set of Lyapunov–Krasovskii functionals. New multiple summation inequalities are derived that involve the famous discrete Jensen?s and Wirtinger?s inequalities, as well as the recently presented inequalities for single and double summation in [16]. The present paper aims at showing that the proposed set of sufficient stability conditions can be arranged into a bidirectional hierarchy of LMIs establishing a rigorous theoretical basis for the comparison of conservatism of the investigated methods. Numerical examples illustrate the efficiency of the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号