首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文介绍利用直线两点式参数方程来证明比例式的一种规范化有效方法,供参考。一、直线两点式参数方程如图, 设P_1(x_1,y_1)、P(x_2,y_2)、P(x,y)都是直线l上的点,且P_1P/PP_2=λ则(x=x_1+λx_2/1+λ)/(y=y_+λy_2/1+λ)(λ为参数,λ≠-1) 即为过P_1、P_2两点的直线的参数方程。∵由(x_1-x_2)/(x-x_2)=1+λ 及  相似文献   

2.
我们知道,在直角坐标系中,设点P_1(x_1,y_1)、P_2(x_2,y_2),若点P(x,y)为有向线段P_1P_2的内(外)分点,则点P分P_1P_2所成的比λ为 λ=(P_1P)/(PP_2)=(x-x_1)/(x_2-x)(=(y-y_1)/(y_2-y)>0(<0)。 (*) 特别地,当线段P_1P_2落在x轴上时,纵坐标为0,情形就更加明了(以下讨论仅在x轴上进行,且不妨约定x_10(λ<0),则P为P_1P_2的内(外)分点,亦即P点介于P_1P_2之间(之外),这时有x_1相似文献   

3.
我们熟知:当已知线段两端点为P_1(x_1,y_1)、P_2(x_2,y_2)、点P(x,y)分所成的比为λ时,点P的坐标是: x=(x_1+λx_2)/1+λ,y=(y_1+λy_2)/1+λ(λ≠-1) 如果我们将上述线段更换为圆柱、棱柱、圆台、棱台、圆锥、棱锥,则可得到一组与线段定比分点坐标公式形式相似的结论: 若换线段为棱台有:结沦一:设棱台上、下底的面积分别为S′、S,平行于两底的截面积为S_0,若截面分高的上、下两部分之比为λ,则:  相似文献   

4.
本文给出一个关于直线分线段所成比的性质定理。并举例说明它的广泛应用.定理设直线 l:Ax By C=0与过P_1(x_1,y_1)、P_2(x_2,y_2)的不同两点的连线相交于点 P(不同于 P_1、P_2,且 P_1、P_2不在 l上),则  相似文献   

5.
线段的定比分点坐标公式x=(x_1 λx_2)/(1 λ),y:(y_1 λy_2)/(1 λ),λ=(x-x_1)/(x_2-x)反映了线段的起点P(x_1,y_1)、终点P_2(x_2,y_2)、分点P(x,y)与定  相似文献   

6.
我们知道,若P_1(x_1,y_1),P_2(x_2,y_2),P(x,y),且P分P_1P_2的比为λ(λ=-1),见y=y_1 λy_2/1 λ或λ=y-y_1/y_2-y。由公式易得: 1°.λ>0(?)y介于y_1、y_2之间。  相似文献   

7.
设P_1(x_1,y_1),P_2(x_2,y_2)是坐标平面上的两点,直线L的方程为f(x,y) =ax by C=0,二次曲线G的方程为 F(x,y)=Ax~2 Bxy Cy~2 Dx十Ey十F=0.1 若记直线P_1P_2与直线L的交点为P(x,y),并且P点分所成的比为λ(λ≠-1).则 x=(x_1 λx_2)/(1 λ),y=(y_1 λy_2)/(1 λ).代入方 程f(x,y)=0得:a(x_1 λx_2) b(y_1 λy_2) c(1 λ)=0,即ax_1 by_1 c λ(ax_2 by_2 c)=0.  相似文献   

8.
考虑到定比分点公式中λ是有向线段的比,我们可以很容易地得到一个很有用处的定理:过 P_1(x_1,y_1),P_2(x_2,y_2)两点的直线若与直线L:Ax+By+C=0相交于点P,则  相似文献   

9.
<正>直线的参数方程是由直线经过的定点和其倾斜角确定的.经过定点P_0(x_0,y_0),倾斜角为α的直线的参数方程为{x=x_0+tcosα,y=y_0+tsinα(为参数).我们不妨把直线参数方程的这种形式称之为直线参数方程的标准式.一、直线l参数方程中参数t的深层理解设直线l过定点P(x_0,y_0),P,P_1,P_2是直线l上的点,在参数方程标准式中相应参数值分別为t、t_1、t_2,则(1)P与P_0的距离为|PP_0|=|t|.  相似文献   

10.
F(x.y)=a_(11)x~2+2a_(12)xy+a_(22)y~2+2a_(13)x+2a_(23)y+a_(33)=0 (1)设点P_0(x_0,y_0)为不在曲线(1)的焦点所在区域内的点,因而过P_0可向曲线(1)作二条切线,两个切点分别为P_1(x_1,y_1),P_2(x_2,y_2),称联P_1P_2的直线l为曲线(1)关于P_0的切点弦。本文给出l的一种简易求法。 命题:若P_0(x_0,y_0)为平面上不在曲线(1)的焦点区域内的任一点,则曲线(1)关于P_0的切点弦方程为:  相似文献   

11.
在直角坐标系下,如果一条直线l经过已知点P_0(x_0,y_0),倾角为a,那么它的参数方程为 {x=x_0 tcosa y=y_0 tsina (t为参数) (*) 这个方程很重要,应让学生很好理解和掌握。 (一) 关于参数t的几何意义方程(*)中,参数t的几何意义是直线l上的定点P_0(x_0,y_0)与l上的任意一点P(x,y)所成的有向线段P_0P的数量P_0P,即t=P_0P。当P_0P与l同向时,有  相似文献   

12.
众所周知,过二次曲线Ax~2+Cy~2+Dx+Ey+F=0 (g)上一点P_1(x_1,y_1)的切线方程为Ax_1x+Cy_1y+D((x_1+x)/2)+E((y_1+y)/2)+F=0(h)。这是一个将切点(曲线上的点)的坐标x_1、y_1与切线上的点(曲线外的点)的坐标x、y联系起来的公式。当已知切点P_1的坐标P_1(x_1,y_1)时,将x、y看作变量,则(h)为过P_1的切线上点的坐标满足的方程,即过P_1的切线方程。当已知曲线外一点P的坐标P(x,y)时,将x_1、y_1看作变量,则(h)  相似文献   

13.
我们知道经过点P_1(x_1,y_1)倾角为α的直线l,其参数方程是: x=x_1+tcosa y=y_1+tsinα(t是参数) 一般课本上都是这样解释t的几何意义的:|t|就是动点 P(x,y)与已知点P_1(x_1,y_1)之间的距离。当P在P_1上方时,t是正值;当P在P_1下方时,t是负值。这样解释,学生不易接受,在解题时常常出错,尤其是在求直线l与二次曲线的交点到已知点P_1的距离的和、积这一类问题时,对t的正、负号搞不清。我在讲解这一问题时是这样向学生解释  相似文献   

14.
在定比分点公式中,若能从定比分点P的坐标(x,y)随定比λ变化而变化这一事实出发,将它看成是过P_1(x_1,y_1)和P_2(x_2,y_2)两点的直线的参数方程(λ是参数)。那么,直线P_1P_2上任一点的坐标就可用λ的不同取值来确定,根据这一思考,当我们把形如的函数最小值(取“ ”时),最大值(取“-”时)问题,也设法转化为距离问题之后,如果再用定比分点公式求解,不仅可以大大简化运算过程,直接求出函数的最值时刻和相应最大、小值,而且还可以培养学生的  相似文献   

15.
在直角坐标平面内点P(X_0,y_0),直线l:Ax By C=0,过 P 作 l 的垂线 PQ,设垂足为 Q(x',y'),显然直线 PQ 的方程为:B(x-x_0)-A(y-y_0)=0,令x'-x_0=λA,则 y-y_0=λB,又Q∈l,则有:A(x_0 λA) B(y_0 λB) c=0.解得:λ=-Ax_0 By_0 C/A~2 B~2,显然λ是由点 P 和直线 l 确定的常量.我们把它记作λ(P,l),有时简记为λ.显然,过 P 作 l 的垂线之垂足 Q(x_0 XA,y_0 λB);P 关于 l 的对称点 P'(z_0 2λA,y_0 2λB).  相似文献   

16.
在变换φ下,xOy平面内的点P(x,y),变换为uOv平面内的点尸P~1(u,v)。设xOy平面内的点P_1(x_1,y_1)、P_2(x_2,y_2),通过变换φ,在uOv平面内对应的点分别为P_1′(u_1,v_1)、P_2′(u_2,v_2)(x_1≠x_2,u_1≠u_2),则有  相似文献   

17.
引理1 设两已知点p_1(x_1,y_1)、p_2(x_2,y_2)的连线交直线Ax+By+c=0于点P(P_2不在此直线上).则  相似文献   

18.
定义。设函数f(x,y,z)定义于空间区域Ω,P_0(x_0,y_0,z_0)是Ω的一个内点,l是从P_0出发的一条射线,点P是Ω内在l上的任意点,ρ是P与P_0间的距离,如果极限存在,这个极限值称为f(x,g,z)在点P_0沿方向l的方向导数,记作f_l(x_1,y_0,z_0)。这个定义,有的学生理解不透的是,首先函数在定点沿定方向的方向导数是一个数  相似文献   

19.
从平面几何到代数、立体几何和解析几何,证明三点共线的命题、方法、技巧,实在不少,它们都可以归结为等价命题.(1)P、Q、R 三点共线(在同一条直线上).(2)P 在直线 QR 上.(3)P 到直线 QR 的距离为0.(4)P、Q、R 都是平面α与β的公共点.(5)P、Q、R 是△ABC 外接圆上一点分别在直线AB、BC、CA 上的射影.(6)S_(△PQR)=0。(7)三点 P、Q、R 在直线 AB 同侧,且 S_(△PAB)=S_(△QAB)=S_(△RAB).(8)线段 PQ、QR、PR 中,有两条之和等于第三条.(9)k_(PQ)=k_(PR).(10)若直线 PQ 的方程为 Ax By C=0,则直线 PR 的方程为 kAx kBy kC=0(k≠0为常数).若设三点 P、Q、R 的坐标分别为(x_1,y_1)、(x_2,y_2)、(x_3,y_3),则有(11)(x_3,y_3)满足方程(x-x_1)/(x_2-x_1)=(y-y_1)/(y_2-y_1).(12)设λ_1=(x_1-x_2)/(x_2-x_3),λ_2=(y_1-y_2)/(y_2-y_3),则λ_1=λ_2.  相似文献   

20.
定义若圆上任一点到点 A 的距离与到点 B 的距离的比恒为常数λ(λ>0,λ≠1),则称该圆分有向线段()所成的比是λ;该圆称为有向线段()的定比分圆.定理设 A(x_1,y_1)、B(x_2,y_2)是定点,一个圆分有向线段()所成的比是λ,则该圆的圆心坐标是 x_0=(x_1-λ~2x_2)/(1-λ~2),y_0=(y_1-λ~2y_2)/(1-λ~2),半径是 r=λ|1-λ~2|·|AB|.证明:设 P(x,y)是圆上的动点,由 |PA|/|PB|=λ得(x-x_1)~2 (y-y_1)~2=λ~2[(x-x_2)~2 (y-y_2)~2],经整理,得x~2 y~2-2x·(x_1-λ~2x_2)/(1-λ~2)-2x·(y_1-λ~2y_2)/(1-λ~2)=(λ~2x_2~2 λ~2y_2~2-x_1~2-y_1~2)/(1-λ~2),配方并化简整理,得  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号