首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
In this study, a wiki was integrated into a professional development model that systemically addresses early-career teachers?? needs. This study was conducted to examine the impact of wiki-based professional development activities in a scientist-teacher professional learning community and focused on early-career teachers?? perceptions of the role of wiki technology and knowledge of teaching through inquiry. Teachers participated in the Professional Learning Community Model for Entry into Teaching Science (PLC-METS), a professional development program that is based on an integrated teacher education model of knowledge sharing, collaboration, and communication between teachers and scientists, with the goal of supporting early-career teachers?? ability to engage their students in scientific inquiry. The use of a wiki environment to collaborate on activities, deliver resources, and share knowledge is rapidly expanding in professional development communities. The use of the wiki in PLC-METS positively predicted the results of teachers?? knowledge of inquiry-based teaching. Results demonstrate that the wiki can contribute to building a learning community for collaboration between early-career science teachers and scientists. The paper also discusses the educational implications for the design of wiki-based professional learning communities that impact teachers?? professional development.  相似文献   

3.
In 1990, a large proportion of third year primary trainee teachers at Victoria College had observed or taught very few or no science lessons during the first two years of their course. The students felt that a lack of content knowledge, a crowded school curriculum, and problems associated with managing resources and equipment, were the main factors contributing to the low level of science being taught in schools. By the end of their third year significantly more students had taught science than after the second year. There was also a change in approach to teaching science with more practical activities being included than previously. The science method unit taught to the students in the third year of their course contributed to this increase. The students considered the hands-on activities in class to have been the most effective aspect of the unit in their preparation for the teaching of primary science. Specializations: children's learning in science, primary teacher education. Specializations: student understanding of biology, evaluation of formal and informal educational settings. Specializations: gender, science and technology, environmental education. Specializations: children's learning in science, language and science.  相似文献   

4.
The purpose of this quasi-experimental study was to determine the effects of a field-based, inquiry-focused course on pre-service teachers?? geoscience content knowledge, attitude toward science, confidence in teaching science, and inquiry understanding and skills. The field-based course was designed to provide students with opportunities to observe, compare, and investigate geological structures in their natural environment and to gain an understanding of inquiry via hands-on learning activities designed to immerse students in authentic scientific investigation. ANCOVA and MANCOVA analyses examining differences in outcome measures between students in the field experience (n?=?25) and education students enrolled in the traditional, classroom-based course (n?=?37) showed that students in the field course generally had significantly higher scores. Results provide evidence of the value of the field and inquiry-based approach in helping pre-service teachers develop the needed skills and knowledge to create effective inquiry-based science lessons.  相似文献   

5.
6.
Grounded in Hallidayan perspectives on academic language, we report on our development of an educative science assessment as one component of the language-rich inquiry science for English-language learners teacher professional learning project for middle school science teachers. The project emphasizes the role of content-area writing to support teachers in diagnosing their students’ emergent understandings of science inquiry practices, science content knowledge, and the academic language of science, with a particular focus on the needs of English-language learners. In our current school policy context, writing for meaningful purposes has received decreased attention as teachers struggle to cover large numbers of discrete content standards. Additionally, high-stakes assessments presented in multiple-choice format have become the definitive measure of student science learning, further de-emphasizing the value of academic writing for developing and expressing understanding. To counter these trends, we examine the implementation of educative assessment materials—writing-rich assessments designed to support teachers’ instructional decision making. We report on the qualities of our educative assessment that supported teachers in diagnosing their students’ emergent understandings, and how teacher–researcher collaborative scoring sessions and interpretation of assessment results led to changes in teachers’ instructional decision making to better support students in expressing their scientific understandings. We conclude with implications of this work for theory, research, and practice.  相似文献   

7.
It is a common view that developing teachers’ competence to restructure or reframe their knowledge and beliefs is inevitably a complex challenge. This paper reports on a research project with the aim to develop science teachers’ pedagogical content knowledge (PCK) through their participation in a learning study. A learning study is a collegial process in which teachers work together with a researcher to explore their own teaching activities in order to identify what is critical for their students’ learning. During one semester, three secondary science teachers worked in a learning study together with a researcher in a cyclical process in order to create prerequisites and further identify conditions for students’ learning. During the learning study, data were collected from video-recorded lessons and stimulated recall sessions in which the teachers and the researcher reflected on the lessons to analyze their development of PCK, their students’ learning and the impact of that knowledge on their own teaching. The results provide an insight into how the teachers developed their self-understanding in which they questioned their own epistemological beliefs, aims and objectives of teaching and taken-for-granted assumptions about science teaching and learning. As such, the study provides an understanding of teacher professional learning through a careful investigation of how teachers’ PCK is enhanced through their participation in the learning study, and further, how students’ learning might be developed as a consequence.  相似文献   

8.
Given the globalization of science education and the different cultures between China and Germany, we tried to compare and explain the differences on teacher questions and real life instances in biology lessons between the two countries from a culture-related perspective. 22 biology teachers from China and 21 biology teachers from Germany participated in this study. Each teacher was videotaped for one lesson on the unit blood and circulatory system. Before the teaching unit, students’ prior knowledge was tested with a pretest. After the teaching unit, students’ content knowledge was tested with a posttest. The aim of the knowledge tests here was for the better selection of the four samples for qualitative comparison in the two countries. The quantitative analysis showed that more lower-order teacher questions and more real life instances that were introduced after learning relevant concepts were in Chinese lessons than in German lessons. There were no significant differences in the frequency of higher-order questions or real life instances that were introduced before learning concepts. Qualitative analysis showed that both German teachers guided students to analyze the reasoning process of Landsteiner experiment, but nor Chinese teachers did that. The findings reflected the subtle influence of culture on classroom teaching. Relatively, Chinese biology teachers focused more on learning content and the application of the content in real life; German biology teachers emphasized more on invoking students’ reasoning and divergent thinking.  相似文献   

9.
Many within the science education community and beyond see practical work carried out by students as an essential feature of science education. Questions have, however, been raised by some science educators about its effectiveness as a teaching and learning strategy. This study explored the effectiveness of practical work by analysing a sample of 25 ‘typical’ science lessons involving practical work in English secondary schools. Data took the form of observational field notes and tape‐recorded interviews with teachers and students. The analysis used a model of effectiveness based on the work of Millar et al. and Tiberghien. The teachers’ focus in these lessons was predominantly on developing students’ substantive scientific knowledge, rather than on developing understanding of scientific enquiry procedures. Practical work was generally effective in getting students to do what is intended with physical objects, but much less effective in getting them to use the intended scientific ideas to guide their actions and reflect upon the data they collect. There was little evidence that the cognitive challenge of linking observables to ideas is recognized by those who design practical activities for science lessons. Tasks rarely incorporated explicit strategies to help students to make such links, or were presented in class in ways that reflected the size of the learning demand. The analytical framework used in this study offers a means of assessing the learning demand of practical tasks, and identifying those that require specific support for students’ thinking and learning in order to be effective.  相似文献   

10.
This study explored, from the perspective of intellectual passion developed by Michael Polanyi, the unintended learning that occurred in primary practical science lessons. We use the term ‘unintended’ learning to distinguish it from ‘intended’ learning that appears in teachers’ learning objectives. Data were collected using video and audio recordings of a sample of twenty-four whole class practical science lessons, taught by five teachers, in Korean primary schools with 10- to 12-year-old students. In addition, video and audio recordings were made for each small group of students working together in order to capture their activities and intra-group discourse. Pre-lesson interviews with the teachers were undertaken and audio-recorded to ascertain their intended learning objectives. Selected key vignettes, including unintended learning, were analysed from the perspective of intellectual passion developed by Polanyi. What we found in this study is that unintended learning could occur when students got interested in something in the first place and could maintain their interest. In addition, students could get conceptual knowledge when they tried to connect their experience to their related prior knowledge. It was also found that the processes of intended learning and of unintended learning were different. Intended learning was characterized by having been planned by the teacher who then sought to generate students’ interest in it. In contrast, unintended learning originated from students’ spontaneous interest and curiosity as a result of unplanned opportunities. Whilst teachers’ persuasive passion comes first in the process of intended learning, students’ heuristic passion comes first in the process of unintended learning. Based on these findings, we argue that teachers need to be more aware that unintended learning, on the part of individual students, can occur during their lesson and to be able to better use this opportunity so that this unintended learning can be shared by the whole class. Furthermore, we argue that teachers’ deliberate action and a more interactive classroom culture are necessary in order to allow students to develop, in addition to heuristic passion, persuasive passion towards their unintended learning.  相似文献   

11.
Previous research has highlighted challenges associated with embracing an inquiry approach to science teaching for primary teachers, often associating these challenges with insecurity linked to the lack of content knowledge. We argue that in order to understand the extent to which primary student teachers are able to embrace science teaching informed by scientific literacy for all, it is important to take into account various, sometimes competing, science teacher and primary teacher Discourses. The aim of this paper is to explore how such Discourses are constituted in the context of learning to teach during a 1-year university-based Post Graduate Certificate of Education course. The empirical data consist of semi-structured interviews with 11 student teachers. The analysis identifies 5 teacher Discourses and we argue that these can help us to better understand some of the tensions involved in becoming a primary teacher with a responsibility for teaching science: for example, in terms of the interplay between the student teachers' own educational biographies and institutionally sanctioned Discourses. One conclusion is that student teachers' willingness and ability to embrace a Discourse of science education, informed by the aim of scientific literacy for all, may be every bit as constrained by their experience of learning science through ‘traditional schooling’ as it is by their confidence with respect to their own subject knowledge. The 5 Discourses, with their complex interrelations, raise questions about which identity positions are available to students in the intersections of the Discourses and which identity positions teacher educators may seek to make available for their students.  相似文献   

12.
We explored how new Teachers of Color grappled with equity and excellence as they were constructing science teacher identities while learning to teach in a teacher education program committed to equity, justice, and excellence, and eventually teaching in urban schools where inequities and injustices persist. The theoretical framing, compiled from various bodies of literature, weaved together what we consider as essential parts of teacher identity construction and provided a lens with which to examine how conceptions of equity and excellence that the study participants were constructing meshed with their multiple identities, considerations on legitimate knowledge production, and dialectical relationships with which they grappled. Using transcendental phenomenology, we learned from and with three Black and Latinx teachers and their narratives. The teachers intertwined similarly and differently their evolving conceptions of equity and excellence into their evolving science teacher identities as they engaged in forms of contentious local practice and reflected on their experiences as science Teachers of Color teaching predominately Students of Color. Their multiple identities were meshed with histories of larger institutions—science, schooling, and society—and together these were shaping their conceptions of equity and excellence. The intermingling of equity and excellence, which was guiding the curricular and instructional decisions they were making in their classrooms, was also linked to what they considered as legitimate knowledge production in science classes and what counted as knowledge that their students needed to know at different times. The various dilemmas defined by opposing poles with which they were grappling also functioned as scales on which their coordinated equity-excellence unit of meaning was forming. Based on the study, we offer insights into practices that science teacher educators may consider as they prepare new teachers, and work with practicing teachers, to embrace and coordinate equity and excellence in their ever-developing science teacher identities.  相似文献   

13.
   This self-study examined the 1st-year science teacher educator's integration of instructional technology into a science methods course and modeled the reflective practice of her own teaching. Elementary science methods students participated in a series of inquiry-based activities that utilized various instructional technologies. Data sources included daily reflections, formative assessments, concern-based surveys, and class assignments. Findings from this self-study revealed that the teacher educator's own reflections and practical inquiry influenced and paralleled her students’ development of learning how to teach scientific inquiry using instructional technology. Results suggest that inviting preservice teachers into reflective practice and modeling for them the development of professional practical knowledge allow them to address the uncertainties in their own learning about using technology for inquiry-based science teaching.  相似文献   

14.
15.
Reading the interesting article Discerning selective traditions in science education by Per Sund, which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.  相似文献   

16.
This study explored the pedagogical content knowledge (PCK) and its development of four experienced biology teachers in the context of teaching school genetics. PCK was defined in terms of teacher content knowledge, pedagogical knowledge and knowledge of students’ preconceptions and learning difficulties. Data sources of teacher knowledge base included teacher-constructed concept maps, pre- and post-lesson teacher interviews, video-recorded genetics lessons, post-lesson teacher questionnaire and document analysis of teacher's reflective journals and students’ work samples. The results showed that the teachers’ individual PCK profiles consisted predominantly of declarative and procedural content knowledge in teaching basic genetics concepts. Conditional knowledge, which is a type of meta-knowledge for blending together declarative and procedural knowledge, was also demonstrated by some teachers. Furthermore, the teachers used topic-specific instructional strategies such as context-based teaching, illustrations, peer teaching, and analogies in diverse forms but failed to use physical models and individual or group student experimental activities to assist students’ internalization of the concepts. The finding that all four teachers lacked knowledge of students’ genetics-related preconceptions was equally significant. Formal university education, school context, journal reflection and professional development programmes were considered as contributing to the teachers’ continuing PCK development. Implications of the findings for biology teacher education are briefly discussed.  相似文献   

17.
18.
Studies have shown that there is a need for pedagogical content knowledge among science teachers. This study investigates two primary teachers and their objectives in choosing inquiry- and context-based instructional strategies as well as the relation between the choice of instructional strategies and the teachers’ knowledge about of students’ understanding and intended learning outcomes. Content representations created by the teachers and students’ experiences of the enacted teaching served as foundations for the teachers’ reflections during interviews. Data from the interviews were analyzed in terms of the intended, enacted, and experienced purposes of the teaching and, finally, as the relation between intended, enacted, and experienced purposes. Students’ experiences of the teaching were captured through a questionnaire, which was analyzed inductively, using content analysis. The results show that the teachers’ intended teaching objectives were that students would learn about water. During the enacted teaching, it seemed as if the inquiry process was in focus and this was also how many of the students experienced the objectives of the activities. There was a gap between the intended and experienced objectives. Hardly any relation was found between the teachers’ choice of instructional strategies and their knowledge about students’ understanding, with the exception that the teacher who also added drama wanted to support her students’ understanding of the states of water.  相似文献   

19.
学科教学知识(PCK)是教师知识的核心,发展PCK是教师专业发展的重要途径。文章阐述小学科学教师PCK的内涵,即教师为适应不同能力和兴趣的小学生,在将特定科学知识转化为学生易于理解的课堂教学形式时所使用的知识,它由小学科学课程知识、学习者知识、教学策略知识和学习评价知识构成。小学科学教师PCK的发展策略主要有:根据PCK内涵进行反思;加强专业阅读,进一步学习科学知识和科学教育知识;在学习共同体成员的交流中建构PCK。  相似文献   

20.
Teaching science as explanation is fundamental to reform efforts but is challenging for teachers—especially new elementary teachers, for whom the complexities of teaching are compounded by high demands and little classroom experience. Despite these challenges, few studies have characterized the knowledge, beliefs, and instructional practices that support or hinder teachers from engaging their students in building explanations. To address this gap, this study describes the understandings, purposes, goals, practices, and struggles of one third-year elementary teacher with regard to fostering students' explanation construction. Analyses showed that the teacher had multiple understandings of scientific explanations, believed that fostering students' explanations was important for both teachers and students, and enacted instructional practices that provided opportunities for students to develop explanations. However, she did not consistently take up explanation as a goal in her practice, in part because she did not see explanation construction as a strategy for facilitating the development of students' content knowledge or as an educational goal in its own right. These findings inform the field's understanding of teacher knowledge and practice with regard to one crucial scientific practice and have implications for research on teachers and inquiry-oriented science teaching, science teacher education, and curriculum materials development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号