首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 866 毫秒
1.
《数学通报》1 997年第 7期的征解问题是 :设xi>0 (i=1 ,2 ,… ,n ,n≥ 3 ) ,证明或否定 (记S =x1 x2 … xn) (aij=xixj) :a2 1(S -x1-x2 ) a3 2 (S -x2 -x3 ) … a1n(S -xn-x1)≥ (n -2 )S .①该刊 1 999年第 1 2期刊出一个“证明” ,但陶兴模著文 (《中学数学教学参考》2 0 0 3年第 1 1期 )指出其错误 .现用归纳法给出一个证明 :①式可化为a1nx1 a2 1x2 … an ,n -1xn ≤ (a1n a2 1 … an ,n -1-n 1 )S .②易见 ,n =3时 ,②式成立 ,现设②式对n -1成立 .不妨设x1是xi(i=1 ,…n)中最大的 ,那么②式左边 =(a1nx1 a2 1x2 -a2nx2 ) …  相似文献   

2.
<数学通报>2009年第4期刊登的问题1785:"设0≤xi≤1(i=1,2,3,...,n),n∈N,n≥3,且n∑i=1xi=1.试求f(x1,x2,...,xn)=n∑i=1xi/(1+x2i)的最大值"的解答繁难复杂,不易发现和掌握.  相似文献   

3.
猜想(数学问题315.2) 议xi>0,i=1,2,…,n(n≥3),则有Sn=x2/x1(x3 x4 … xn) x3/x2(x4 … xn x1) … xn/xn-1(x1 x2 … xn-2) x1/xn(x2 x3 … xn-1)≥(n-2)n∑i=1xi.  相似文献   

4.
第39届IMO预选题11[1]如下:设x,y,z是正实数,且xyz=1,证明:x3 y3(1 y)(1 z)(1 z)(1 x) z3≥.3(1)(1 x)(1 y)4文[2]将(1)式推广为:定理1设xi∈R (i=1,2,L,n),且x1x2Lxn=1,a≥1,n≥2,有nn∑(xii=1a x1)L(a xi?1)(a xi 1)L(a xn)≥n.(2)?1(a 1)n本文给出定理1的一个推广:定理2设xi  相似文献   

5.
题设xi>0(i=1,2,3…,n),x1+x2+…+xn=1,n≥2,n∈N+,证明或否定:(x1+x2+…+xn)11+1+3x1+11+1+3x2+…+11+1+3xn≤n2n+n+3.(注供题人对第一个给出正确证明与否定的人提供100元的奖金)有奖解题擂台(80)@孙文彩$广东省深圳市平冈中学!邮编:518000  相似文献   

6.
《数学通报》1997年第7期的征解问题是:设xi〉0(i=1,2,…,n,n≥3),证明或否定(记S=x1+x2+…+xn)(aij=xi/xj);  相似文献   

7.
猜想(数学问题315.2)设xi〉0,i=1,2,…,n(n≥3),则有Sn=x2/x1(x3+x4+…+xn)+x3/x2(x4+…+xn+x1)+…+xn/xn-1(x1+x2+…+xn-2)+x1/xn(x2+x3+…+xn-1)≥(n-2)n∑i=1xi.  相似文献   

8.
题设xi∈R*(i=1,2,…,n),且x1x2…xn=1,n>3,m是实数,则当m≥n-2或m≤-n 1时,有∑ni=1xim(1 x1)…(1 xi-1)…(1 xi 1)…(1 xn)≥2nn-1(注这是命题人在2004年第10期《福建中学数学》上一文中提出的一个猜想,迄今为止,未见解决,特作为擂题.命题人对第一位解答者提供奖金50元.)有奖解题擂台(88)@郭要红$安徽师范大学数学计算机科学学院!241000~~  相似文献   

9.
文[1]用均值不等式广泛地解决了一类分式不等式的证明 .本文来介绍这类不等式的一般性证法 ,证明中用到柯西不等式及其推论 .柯西不等式设 ai,bi ∈ R( i =1 ,2 ,… ,n) ,则 ( a21 + a22 +… + a2n) ( b21 + b22 +… + b2n)≥( a1 b1 + a2 b2 +… + anbn) 2推论 设 ai,bi ∈ R+( i =1 ,2 ,… ,n) ,则a21b1+ a22b2+… + a2nbn≥( a1 + a2 +… + an) 2b1 + b2 +… + bn下面结合文 [1 ]中的一例阐述推论的应用 .例 1 设 ∑ni=1xi =1 ,xi ∈ R+,i =1 ,2 ,… ,n,证明 :x11 -x1+ x21 -x2+… + xn1 -xn≥ nn -1左边 =x21x1 -x21+ x22x2 -x22+……  相似文献   

10.
对两个优美不等式的再巧证   总被引:1,自引:1,他引:0  
《数学通报》2009年第4期刊登的问题1785:“设0≤xi≤1(i=1,2,3,…,”),n∈N,n≥3,且∑i=1^n xi=1.试求f(x1,x2,…,xn)=∑i=1^n xi/1=xi^2的最大值”的解答繁难复杂,不易发现和掌握.笔者立足基本方法,从简单自然解题的角度探究发现,用均值不等式解之,更能凸现问题本质,展示数学的简洁美.  相似文献   

11.
有奖征解     
<正>设x1、x2、x3、…、xn都为正数,且x1+x2+x3+…+xn=1,求证:(1/xn1-1)(1/xn2-1)(1/xn3-1)…(1/xn n-1)≥(nn-1)n(n∈N*).(第一个证明或否定此题者,给予100元奖励)  相似文献   

12.
1 知识技能 2 要点解析 要点1 特型方程计数:满足方程x1+x2+…+xn=m (m,n∈N?)的一个有序整数组(x1,x2,…, xn),称为该方程的一个整数解. (1)当m≥n时,方程的正整数解(x1,x2,…,xn) (xi∈N?,1≤i≤n)的个数为Cn-1m-1; (2)方程的非负整数解(x1,x2,…,...  相似文献   

13.
设xi∈(0, ∞)(i=1,…,n),n≥3,xn 1=x1,xn 2=x2,1954年Shapiro猜想:  相似文献   

14.
拜读贵刊 2 0 0 0第 1期上刊登的一组新年趣题 ,不禁为各题的巧妙构思和深刻寓意所折服 ,但百密难免一疏 ,其中第 4题就出现了一个小小的疏忽 .第 4题的原题是 :对于互不相等的 xi∈ Z (i=1,2 ,… ,6 5 ) ,满足∑6 5i=1 =10 8,试求 ∑6 5i=1 x2i 的最大值 .其答案是 :取 x1 =x2 =… =x6 4 =1,x6 5 =44时 ,其平方和最大 ,且最大值为 2 0 0 0 .显然 ,这个答案与“互不相等”的假定是相违背的 .事实上 ,在互不相等的前提下 ,条件 ∑6 5i=1 xi=10 8是不可能成立的 ,因为∑6 5i=1 xi≥∑6 5i= 1 i=2 145 .所以 ,如果一定要满足 ∑6 5i =1 xi=10…  相似文献   

15.
设随机变量ξ的概率分布为:则有如下性质:(1)0≤A≤1(i=1,2,…,n,…)(2)p1+p2+…+pn+…=1(3)方差Dξ=P1(x1-Eξ)2+p2(x2-Eξ)2+…+pn(xn-Eξ)2+…=Eξ2-(Eξ)2≥0(4)若Pi>0,(i=1,2,…,n),则方差Dξ=0的充要条件是x1=x2=…=xn=…利用上述性质可以解决非概率统计中的一些问题.1证明恒等式  相似文献   

16.
文 [1]给出了条件 x+ y=1下 1xn+ λyn的最小值定理 ,并利用 (a2 + b2 ) (c2 + d2 )≥ (ac+ bd) 2 (a,b,c,d∈ (0 ,+∞ )和待定系数法证明之 .定理 已知 x,y,λ∈ (0 ,+∞ )且 x+ y=1,则当且仅当 y∶ x=λ1n+ 1 时 ,1xn+ λyn(n∈N* )取最小值 ,最小值为 (1+ λ1n+ 1 ) n+ 1 .本文给出定理的一个简单证明 .证明 ∵x,y,λ∈ (0 ,+∞ ) ,n∈ N* ,且x+ y=1,∴ 1xn+ λyn=(1xn+ λyn) (x+ y) n =(1xn+λyn) (C0nxn+ C1 nxn-1 y+ C2nxn-2 y2 +… + Crnxn-ryr+… + Cnnyn)=1+ C1 nyx + C2ny2x2 +… + Crnyrxr +… + Cnnynxn+ λC0nxnyn + …  相似文献   

17.
对满足条件n∑ i=1 xi=k(≥k,≤k)的形如n∑ i=1 f(xi)≤M(≥M)(k、M为常数)的条件不等式的证明是中学数学的重点和难点内容之一,通常在竞赛和高考压轴试题中出现.此类试题技巧性较强,学生在短时间内难以解决.下面介绍一种“切线法”(构造切线方程实施放缩)来证明此类条件不等式. 切线法 对于x1,x2,…,xn∈D,其中D为给定区间,n∑i=1 xi=k(≥k,≤k),(k为常数),求证:∑f(xi)≤M(≥M).  相似文献   

18.
<数学通讯>1997年第7期上征解问题173是: 设xi>0,i=1,...,n,Sn=x1 ... xn,Pi,j=(xi/xj)(Sn-xi-xj),则Tn=P1,2 P2,3 ... Pn-1,n Pn,1≥(n-2)Sn(n≥3).(1)  相似文献   

19.
题目 已知n个正数x1,x2,…,xn的和为1,求证∑i=1^n xi/1+xi+1+xi+2+…+xn+x1+x2+…+xi-1≥n/2n-1.  相似文献   

20.
人民教育出版社中学数学室编著的全日制普通高级中学教科书 (试验修订本 )《数学》第三册 (选修Ⅱ )的第 2 2 7页介绍了复数集中一元n次方程的根与系数的关系 :如果方程 :anxn +an-1 n-1 +… +a1 x +a0 =0 在复数集中的根为x1 ,x2 ,… ,xn.那么x1 +x2 +… +xn =- an-1 an,x1 x2 +x2 x3 +… +xn-1 xn =an-2an,x1 x2 x3 +x2 x3 x4+… +xn-2 xn-1 xn =- an-3 an,……x1 x2 …xn =( - 1) n a0an.这个定理是一元二次方程根与系数关系的推广 .显然 ,这个定理是错误的 ,错误之处在于对公式的理解和表达 ,我们不难举出如下反例说明其是错误的 :对于…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号