首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《整式的乘除》一章向我们介绍了幂的四个运算性质:a~m·a~n=a~(m+n),(ab)~n=a~n·b~n,a~m÷a~n=a~(m-n).幂的运算性质是进行整式乘除的基础,它不仅可以正向运用,  相似文献   

2.
数学公式具有双向性,这一点同学们都很清楚,但用到时往往只习惯从左到右进行,而不习惯逆向运用.如,幂的运算性质: (1) a~m·a~n=a~(m+m);(2)a~m÷a~n=a~(m-n)(a≠0); (3)(a~m)~n=a~(mn);(4)(ab)~n=a~nb~n.(其中m、n都是正整数)  相似文献   

3.
初一年级牵涉到的幂的运算法则(或性质)有4种,即:(1)a~m·a~n=a~(m+n)(m,n都是正整数),(2)(a~m)~n=a~(mn)(m,n都是正整数),(3)(ab)~n=a~nb~n(n是正整数),(4)a~m÷a~n=a~(m-n)(a≠0,m、n都是正整数).这些法则,就是整式乘除运算的重要依据.要学好整式的乘除,必须先学好幂的运算.而进行幂的运算时,最容易出错的地方则是符号与指数,郭一鸣老师通过具体的例子,分析可能出现的错误与原因,希望同学们读后,在学习中免走弯路  相似文献   

4.
我们知道,由二项式定理 (a b)~n=a~n C_1~na~(n-1)b … C_n~(n-1)ab~(n-1) b~n可得 (a b)~n=aM_1 b~n; (a b)~n=a~2M_2 nab~(n-1) b~n; (a b)~n=a~n abM_i b~n; …………其中,M_i(i=1,2,3,…)是整式。利用上述性质可以证明一类多项式的整除问题。兹举例如下(本文中的n均为自然数): 例1 求证(x 1)~(2n 1) x~(n 2)能被x~2 x 1整除。  相似文献   

5.
代数不等式是中学中的一个重要内容,由于它本身具有完美的形式及证明的灵活性,往往可以考察学生的分析能力和应变能力,在这里仅介绍一些证明不等式常用的方法和变形技巧。 一,比较法; 要证明一个不等式A>B可以作一个差证明A—B>0;当B>0时,可以作一个商A/B>1证明 例:已知:a,b∈R~ ,n∈N,求证:(a b)(a~n b~n)≤2(a~(n 1) b~(n 1)) 证明:(a b)(a~n b~n)-2(a~(n 1) b~(n 1)) =a~(n 1) a~nb ab~n b~(n 1)-2a~(n 1)-2b~(n 1) =ab~n ba~n-a~(n 1)-n~(n 1) =a(b~n-a~n) b(a~n-b~n) =(a—b)(b~n-a~n) Ⅰ)当a>b>0时,b~n-a~n<0,a-b>0 (b~n-a~n)(a—b)<0 Ⅱ)当b>a>0时,b~n-a~n>0,a-b<0 (b~n-a~n)(a—b)<0 Ⅲ当a=b>>0时,b~n-a~n=0,a-b=0 (b~n-a~n)(a-b)=0 综上Ⅰ,Ⅱ,Ⅲ,有(a-b)(a~n b~n)-2(a~(n 1) b~(n 1))≤0 (a—b)(a~n b~n)≤2(a~(n 1) b~(n 1))  相似文献   

6.
若 a、b、x、y 均为非零实数,S_n=x·a~n+y·b~n,n=0,1,2,……,则有S_n=(a+b)S_(n-1)-abS_(n-2)(n≥2)(1)证明:左=S_n=x·a~n+y·n~n=(x·a~(n-1)+y·b~(n-1)(a+b)-a·y·b~(n-1)-6  相似文献   

7.
命题1 设三角形三边长分别为a、b、c,面积为S。则a~n b~n c~n≥2~n·3~((4-n)/4)S~(n/2)(n∈N),当且仅当a=b=c时等号成立。 这个命题是Weisenbck不等式a~2 b~2 c~2≥4 3~(1/2)S的推广形式。 证明:当n=1时,  相似文献   

8.
初一代数中学过的幂的运算性质是: ①a~m·a~n=a~(m+n)(m、n都是整数); ②(a~m)~n=a~(mn)(m、n都是整数); ③(ab)~n=a~nb~n(n为整数); ④a~m÷a~n=a~(m-n)(a≠0,m、n都是整数,且m>n). 其中同底数幂的运算性质是最基本的性质,它和幂的乘方、积的乘方、同底数幂的除法综合在一起,演变出各种形式的习题,现举例如下.  相似文献   

9.
<正>通过学习我们知道:1.(a+b)~2=a~2+2ab+b~22.(a+b)~3=a~3+3a~2b+3ab~2+b~33.(a+b)~n=a~n+C_n~1a~(n-1)b+C_n~2a~(n-2)b~2+…C_n~(n-1)ab~(n-1)+b~n这是二项式定理,在学习中我发现,关于(a+b)~n的展开式也可以给出如下证明:(a+b)~n是n个(a+b)相乘,属于多项式乘多项式的问题,每个(a+b)在相乘  相似文献   

10.
十二、以"极限"为背景例12 (重庆)设正数a、b满足(?)(x~2 ax-b)=4,则(?)(a~(n 1) ab~(n-1))/(a~(n-1) 2b~n)=( ).A.0 B.1/4 C.1/2 D.1解析:由(?)(x~2 ax-b)=4,得4 2a-b=4,即b=2a.∴(?)(a~(n 1) ab~(n-1))/(a~(n-1) 2b~n)=(?)(a~(n 1) 2~(n-1)a~n)/(a~(n-1) 2~(n 1)a~n)=(?)(1/(2~(n 1)) 1/4·1/a)/(1/(2~(n 1)·1/a~2) 1/a)=1/4.点评本题新颖之处在于将函数极限和数列极限相结合,打破了以往此类问题单一考查的命题模式.  相似文献   

11.
一、不等思等,产生灵感例1 若a,b,c均为正数,且a b c=abc,则a~n b~n c~n(n>1,n∈N)的最小值是()(A)3((3~n)~(1/3~n))(B)3(C)9~(1/3)(D)3((3~n)~(1/3~n))[注释]:当我们第一遍读完全题以后,有点儿惘然不知所措。已知条件与结论中的四个选项难以挂起来。仔细观察,题中a,b,c所处位置是对称的,正是对称性这一隐含条件的刺激,可大胆地猜想:当a=b=c时,即3a=a~3,a=3~(1/3)时,取得最小值,且最小值为3(1~(1/3))~n=3 3((3~n)~(1/3~n)),马上可选(A)。  相似文献   

12.
第29届IMO试题6是一道难度较大的命题.本文的目的是给出这道题的一个推广,其解法与试题6是完全不同的. 试题6 正整数α与b使得αb 1整除α~2 b~2,求证α~2 b~2/αb 1是某个正整数的平方。试题6的推广设α,b,n都是正整数,n≥2,若 (αb)~(n-1) 1|α~n b~n (1)则A_n=α~n b~n/ (αb)~(n-1) 1是某个正整数的n次方.(其中α|b表示α整除b)  相似文献   

13.
关于幂的运算法则,我们学习了以下四条:(1)am·an=am+n(m、n为正整数);(2)am÷an=am-n(a≠0 m、n为正整数且m>n);(3)(am)n=nmn(m、n为正整数);(4)(ab)n=anbn(n为正整数).并规定了零指数幂和负整数指数幂的意  相似文献   

14.
Jacobsthal不等式(见文[1])设a,b〉0,则na~(n-1)b≤(n-1)a~n+b~n,仅当a=b时等号成立.只要将上述不等式的左右两边同时除以(n-1)b~n,再移项得(a/b)~n≥n/(n-1)(a/b)~(n-1)-  相似文献   

15.
众所周知,对于任意的实数a、b,总存在实数s、t,使得a=s t,b=s-t。有趣的是:运用这个简单的变换,竟可解决许多难度较大的国内外竞赛题。例1 (湖南省1988年中学生数学夏令营试题)已知a、b是任意的正实数,求证:(a~n a~(n/1)b … ab(n-1) b~n)/(n/1)≥((a b)/2)~n。对于本题的证明,笔者所见到的资料都是用数学归纳法,且第二步难度较大,下面给出的证明新颖简捷,通俗易懂。  相似文献   

16.
对于与自然教n有关的等式的证明问题,如果能够利用其特征建立一个迭代关系式,则问题可迅速获得解决。由下面几个例子,可以略见迭代法之一斑。 [例1] 已知:a b c=0,求证:(a~2 b~2 c~2)~2=2(a~4 b~4 c~4) 证明:设f(n)=a~n b~n c~n,ab bc ca=-p abc=q,为a、b、c为根的三次方程为x~3-px-q=0 由上可得(a~n b~n c~n)-p(a~(n-2) b~(n-  相似文献   

17.
一在数学里,有些名称,在不同的场合,不同的阶段有不同的含意。譬如: “幂”这个名称,开始是指“相同因数的乘积”(正整数指数幂),后来,把1/a~n(n是正整数)也算作幂,记作a~(-n)(a≠0);把a~m~(1/n)(m,n正整数)也算作幂,记作a~(m/n)(a>0);甚至a°(a≠0)也算作幂……。  相似文献   

18.
本文介绍递推式:f(n)=a~n b~n=(a b)f(n-1)-abf(n-2),(n≥2,n∈N)和f(n)= a~n b~n c~n=(a b c)f(n-1)-(ab bc ca)f(n-2) abcf(n-3)(n≥3,n∈N)及其应用。  相似文献   

19.
本刊1992年第1期《用函数的凹凸性证明不等式竞赛题》中的例1解答有误,现摘录如下: 例1 设n为自然数,a、b为正实数,且满足a+b=2,则1/1+a~2/+1/1+b~2的最小值是 (1990年全国高中数学联赛试题) 解:设f(x)=1/1+x~2,容易证明f(x)在R~+上是凹函数,由性质得 1/2[f(a)+f(b)]≥f(a+b/2)=f(1).(*)即 1/2(1/1+a~n+1/1+b~n)≥1/2, 1/1+a~n+1/1+b~n≥1/2,当a=b=1时等号成立. ∴1/1+a~n+1/1+b~n的最小值是1. 上面所得的结果是对的,但解法却是错的,其实,对n≥2,f(x)=1/1+x~R并非R~+上的凹函数.因通过计算可得  相似文献   

20.
由二项式定理:(a+b)~n=C_n~0a~n+C_n~1a~(n-1)b+…+C_n~nb~n,(a-b)~n=C_n~0a~n-C_n~1a~(n-1)b+…+(-1)~nC_n~nb~n相加可得 (a+b)~n+(a-b)~n =2(C_n~ca~n+C_n~2a~(n-2)b~2+C_n~4a~(n-4)b~4+…)。(*)合理利用(*)式,可解答几类难度较大的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号