首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 165 毫秒
1.
In this paper, the finite-time synchronization problem of complex dynamic networks with time delay is studied via aperiodically intermittent control. By compared with the existed results concerning aperiodically intermittent control, some new results are obtained to guarantee the synchronization of networks in a finite time. Especially, a new lemma is proposed to reduce the convergence time. In addition, based on aperiodically intermittent control scheme, the essential condition ensuring finite-time synchronization of dynamic networks is also obtained, and the convergence time is closely related to the topological structure of networks and the maximum ratio of the rest width to the aperiodic time span. Finally, a numerical example is provided to verify the validness of the proposed theoretical results.  相似文献   

2.
The present study investigates the fixed-time synchronization issue for delayed complex networks under intermittent pinning control. Different from some existing semi-intermittent controllers for finite/fixed-time synchronization, our pinning controller is designed in a complete intermittent way. In order to address the encountered theoretical analysis difficulties, a new differential inequality lemma is developed, which is suitable for the fixed-time synchronization studies under periodic or aperiodic complete intermittent control. Then, by using Lyapunov theory and pinning control approach, sufficient conditions are proposed which can guarantee the aperiodically completely intermittent-controlled delayed complex networks realizing fixed-time pinning synchronization. Moreover, the settling time is explicitly estimated, which is irrelevant to the initial values of our network systems. Additionally, as a special case, the scenario of periodic complete intermittent control is also discussed. At last, some simulation examples are utilized to confirm our theoretical outcomes.  相似文献   

3.
This paper addresses the synchronization of stochastic complex networks with time-varying delay via aperiodically intermittent control (AIC). By proposing the concepts of average control ratio and average control frequency for AIC, some new synchronization conditions are obtained, which relax the constraints of the lower bound of control widths and the upper bound of control periods. And the proportion of rest widths can be any value in (0,1). So the constraints on AIC are loosened and thus the conservativeness is reduced compared with the existing related results. Two types of time delay are investigated: (i) the upper bound of time-varying delay should be smaller than the average control width but can be larger than the lower bound of control widths; (ii) the upper bound of time-varying delay has no relationship with control and rest widths. An example of coupled stochastic oscillators systems is presented to show the effectiveness and superiority of our results.  相似文献   

4.
In this paper, the finite-time synchronization between two complex dynamical networks via the periodically intermittent adaptive control and the periodically intermittent feedback control is studied. The finite-time synchronization criteria are derived based on finite-time stability theory, the differential inequality and the analysis technique. Since the traditional synchronization criteria for some models are improved in the convergence time by using the novel periodically intermittent adaptive control and periodically intermittent feedback control, the results of this paper are important. Numerical examples are finally presented to illustrate the effectiveness and correctness of the theoretical results.  相似文献   

5.
《Journal of The Franklin Institute》2022,359(18):10966-10985
This paper studies the exponential synchronization problem for complex networks with hybrid delays via means of the event intermittent control (EIC) strategy. Compared with the traditional aperiodically intermittent control, the control instants and the rest instants are generated when the events occur, which is more in accordance with the actual situation. An modified lemma related to delays is derived without predesigning intermittent instants. Furthermore, some synchronization criteria with less conservatism are established in terms of linear matrix inequalities (LMIs). Meanwhile, it is also shown that Zeno behavior is excluded. Finally, simulations of a numerical example are given to verify the effectiveness of the proposed EIC strategy.  相似文献   

6.
In this paper, the synchronization problem of fractional-order neural networks (FNNs) with chaotic dynamics is investigated via the intermittent control strategy. Two types of intermittent control methods, the aperiodic one and the periodic one, are applied to achieve the synchronization of the considered systems. Based on the dynamic characteristics of the intermittent control systems, the piecewise Lyapunov function method is employed to derive the synchronization criteria with less conservatism. The results under the aperiodically intermittent control show more generality than the ones via the periodically intermittent control. For each of the aperiodic and periodic cases, a simple controller design process is presented to show how to design the corresponding intermittent controller. Finally, two numerical examples are provided to demonstrate the effectiveness of the obtained theoretical results.  相似文献   

7.
This paper is devoted to synchronization between two hyperbolic coupled networks (HCNs) with time-varying delays via aperiodically intermittent pinning control (AIPC). Based on the Lyapunov function with a piecewise continuous function, sufficient criteria of HCNs with internal delays only and with hybrid delays are obtained, separately. And it is found that the convergence speed of synchronization of HCNs with hybrid delays is slower than that with internal delays only. Furthermore, two simulation results are presented to verify the theoretical results.  相似文献   

8.
This paper is concerned with the aperiodically intermittent control (AIC) for the synchronization of discrete-time neural networks with time delay. The synchronization is analyzed by the piecewise Lyapunov function approach and the piecewise Lyapunov–Krasovskii functional approach, respectively. The average activation time ratio of AIC is estimated, which is more general and less conservative than the minimum activation time ratio. Finally, a numerical example is exploited and detailed comparisons are presented to demonstrate the effectiveness and less conservativeness of the obtained results.  相似文献   

9.
This article is mainly focused on investigating pinning exponential synchronization of inertial coupled neural networks (ICNNs) under different directed topologies. The traditional method of variable substitution is removed and replaced by non-reduced order method to investigate the dynamical behavior of second-order coupled system. Additionally, by constructing Lyapunov-Krasovskii functional and utilizing matrix decomposition theory as well as M-matrix theory, an adaptive aperiodically intermittent controller is introduced to derive several improved sufficient criteria based on linear matrix inequalities (LMIs). Finally, some examples with numerical simulation are exhibited to confirm the availability of the theoretical results.  相似文献   

10.
This paper is concerned with the finite-time and fixed-time synchronization of complex networks with discontinuous nodes dynamics. Firstly, under the framework of Filippov solution, a new theorem of finite-time and fixed-time stability is established for nonlinear systems with discontinuous right-hand sides by using mainly reduction to absurdity. Furthermore, for a class of discontinuous complex networks, a general control law is firstly designed. Under the unified control framework and the same conditions, the considered networks are ensured to achieve finite-time or fixed-time synchronization by only adjusting the value of a key control parameter. Based on the similar discussion, a unified control strategy is also provided to realize respectively asymptotical, exponential and finite-time synchronization of the addressed networks. Finally, the derived theoretical results are supported by an example with numerical simulations.  相似文献   

11.
In this paper, finite-time synchronization problem is considered for a class of Markovian jump complex networks (MJCNs) with partially unknown transition rates. By constructing the suitable stochastic Lyapunov–Krasovskii functional, using finite-time stability theorem, inequality techniques and the pinning control technique, several sufficient criteria have been proposed to ensure the finite-time synchronization for the MJCNs with or without time delays. Since finite-time synchronization means the optimality in convergence time and has better robustness and disturbance rejection properties, this paper has important theory significance and practical application value. Finally, numerical simulations illustrated by mode jumping from one mode to another according to a Markovian chain with partially unknown transition probability verify the effectiveness of the proposed results.  相似文献   

12.
This paper investigates the problem of finite-time outer-synchronization for discrete-time complex networks with Markov jump topology in the presence of communication delays and possible information losses and its application to image encryption. A hybrid control, which is subject to both stochastic jumps and deterministic switches, is proposed to realize finite-time and stochastic outer-synchronization for the concerned networks. By utilizing a stochastic Lyapunov functional combined with the average dwell-time method, sufficient conditions are found such that the synchronization error dynamical system is stochastically stable in finite-time. Two numerical examples are presented to illustrate the effectiveness of the proposed method. Finally, the complex network consists of four coupled Lorenz systems are utilized to generate chaotic sequences and a new chaotic image cryptosystem is constructed to transmit encrypted images based on the synchronized drive-response complex networks. Experiments are conducted by using numerical simulation, and the security is analyzed in terms of key space, key sensitivity, histogram distributions, correlation coefficients, information entropy and differential attack measures. The experimental results show that the proposed chaotic image cryptosystem has the advantages of high security against some classical attacks.  相似文献   

13.
In complex networks, asymptotic properties play an important role in modeling, analysis and design in both aspects of theory and practice. In this paper, our focus is on exponential synchronization for a class of complex networks. Under certain conditions, a feedback control and stochastic periodically intermittent noise are designed to synchronize the networks. Such synchronization scheme needs less control energy due to the usage of the intermittent noise. The threshold of intermittent rate for synchronization scheme is derived. Moreover, the noise states are observed in discrete-time mode, which reduces the complexity and the computation burden for continuous observations. The observation supremum is obtained by solving a transcendental equation. Finally, a simulation example is provided, and the comparison results with some existing methods illustrate the effectiveness and advantages of the proposed new design strategy.  相似文献   

14.
In this paper, the issue about the stationary distribution for hybrid multi-stochastic-weight coupled networks (HMSWCN) via aperiodically intermittent control is investigated. Specially, when stochastic disturbance gets to zero, the exponential stability in pth moment for hybrid multi-weight coupled networks (HMWCN) is considered. Under the framework of the Lyapunov method, M-matrix and Kirchhoff’s Matrix Tree Theorem in the graph theory, several sufficient conditions are derived to guarantee the existence of a stationary distribution and exponential stability. Different from previous work, the existing area of a stationary distribution is not only related to the topological structure of coupled networks, but also aperiodically intermittent control (the rate of control width and control duration). Subsequently, as an application to theoretical results, a class of hybrid multi-stochastic-weight coupled oscillators is studied. Ultimately, numerical examples are carried out to demonstrate the effectiveness of theoretical results and effects of the control schemes.  相似文献   

15.
This paper considers the finite-time synchronization problem for a class of fractional-order complex dynamical networks (FOCDNs). By utilizing the properties of fractional calculus and fractional-order comparison principle, we propose a new lemma. Base on the new lemma, some analysis techniques and algebraic graph theory method, some novel criteria are given to ensure finite-time synchronization of FOCDNs, and the upper bound of the setting time for synchronization is estimated. At last, numerical simulations are given to verify the effectiveness of the obtained results.  相似文献   

16.
This paper analyzes synchronization in finite time for two types of coupled delayed Cohen–Grossberg neural networks (CDCGNNs). In the first type, linearly coupled Cohen–Grossberg neural networks with and without coupling delays are considered, respectively. In the second type, nonlinearly coupled Cohen–Grossberg neural networks both with and without coupling delays are discussed. By designing suitable controllers and using some inequality techniques, several criteria ensuring finite-time synchronization of the CDCGNNs with linear coupling and nonlinear coupling are derived, respectively. Moreover, the settling times of synchronization in finite time for the considered networks are also predicted. In the end, the availability for the acquired finite-time synchronization conditions is confirmed by two selected numerical examples.  相似文献   

17.
In some real systems, the intermittent communications and the inaccurate velocity measurements are usually inevitable. To overcome these two communication limitations, this article aims at investigating the containment control problem for a class of second-order multi-agent systems with inherent nonlinear dynamics and aperiodically intermittent position measurements. Under the case that the velocity information is unavailable, a distributed filter is introduced for each second-order follower. Based on the distributed filter, a novel intermittent containment control protocol without velocity measurements is designed. Some sufficient conditions are derived under the common assumption that only relative position measurements between the neighbouring agents are utilized intermittently, and these conditions ensure that the second-order nonlinear multi-agent systems can achieve containment control. Furthermore, some simpler containment conditions are obtained for multi-agent systems with double-integrator dynamics under aperiodically intermittent communications. Finally, numerical simulations are provided to verify the effectiveness of the theoretical results.  相似文献   

18.
A filtering algorithm with a control strategy is proposed to estimate the target state. Unlike the existing literature, the control strategy adopted is based on asynchronous aperiodically intermittent control, which is more general and universal due to the control strategy of each network node being different. Moreover, a Lyapunov function is proposed, which can handle asynchrony for asynchronous aperiodically intermittent control and simplify the proof process. Using the Lyapunov method and the graph theory, we give sufficient conditions to obtain a criterion of exponentially bounded in the mean square about the filtering algorithm and target. Finally, two numerical examples are given to verify the effectiveness of our results.  相似文献   

19.
《Journal of The Franklin Institute》2022,359(18):10653-10675
Without considering identical systems, this paper investigates the finite-time lag projective synchronization of nonidentical fractional delayed memristive neural networks (FDMNN) by designing a novel fractional sliding mode controller (SMC). Due to the existence of memristor, the research is under the framework of Filippov solution. We firstly construct a fractional integral sliding mode surface (SMS). Based on sliding mode control theory and Lyapunov stability theorem, a novel fractional SMC is proposed to realize the lag projective synchronization of nonidentical FDMNN in finite time, and the synchronization setting time is less conservative than the existing results. As the special cases, some sufficient conditions are extended to projective synchronization, lag synchronization, anti-lag synchronization of nonidentical FDMNN in finite time, which improve and enrich some existing results. At last, a simulation example is given to prove the validity of the conclusions.  相似文献   

20.
Finite-time inter-layer projective synchronization (FIPS) of Caputo fractional-order two-layer networks (FTN) based on sliding mode control (SMC) technique is investigated in this article. Firstly, in order to realize the FIPS of FTN, a fractional-order integral sliding mode surface (SMS) is established. Then, through the theory of SMC, we design a sliding mode controller (SMCr) to ensure the appearance of sliding mode motion. According to the fractional Lyapunov direct method, the trajectories of the system are driven to the proposed SMS, and some novel sufficient conditions for FIPS of FTN are derived. Furthermore, as two special cases of FIPS, finite-time inter-layer synchronization and finite-time inter-layer anti-synchronization for the FTN are studied. Finally, this paper takes the fractional-order chaotic Lü’s system and the fractional-order chaotic Chen’s system as the isolated node of the first layer system and the second layer system, respectively. And the numerical simulations are given to demonstrate the feasibility and validity of the proposed theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号