首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
BackgroundAmmonium stress is a prime limiting phenomenon that occurs during methane formation from poultry manure. It is caused by elevated ammonium nitrogen concentrations that result from substrate decomposition. The amounts of methane formed depend on the activity of methanogenic microbes.ResultsDuring the research reported in this paper, the response of a mesophilic consortium inhabiting a biogas reactor to rising load of poultry manure was investigated. The taxonomic composition of bacterial population was mostly typical, however syntrophic bacteria were not detected. This absence resulted in limitation of succession of some methanogenic microorganisms, especially obligate hydrogenotrophs. The methanogenic activity of the consortium was totally dependent on the activity of Methanosaeta. Inhibition of methanoganesis was noticed at ammonium nitrogen concentration of 3.68 g/L, total cessation occurred at 5.45 g/L. Significant amounts of acetic acid in the fermentation pulp accompanied the inhibition.ConclusionsThe effectiveness of the consortium was totally dependent on the metabolic activity of the acetoclastic Methanoseata genus and lack of SAOB did not allow hydrogenotrophic methanogens to propagate and lead to cessation of biogas production at an elevated ammonium concentration at which acetoclastic methanogens were inhibited.How to cite: Świątek M, Lewicki A, Szymanowska D, et al. The effect of introduction of chicken manure on the biodiversity and performance of an anaerobic digester. Electron J Biotechnol 2019;37. https://doi.org/10.1016/j.ejbt.2018.11.002.  相似文献   

2.
BackgroundTriclosan (TCS) is an antimicrobial agent widely used in health care and consumer products. This compound is present in sludge of wastewater treatment plants (WWTPs), and because of its bactericidal characteristics, it can inhibit the methanogenic activity in anaerobic digestion (AD) technology. The aim of this study was to evaluate the toxic effects of TCS on the methanogenic activity.ResultsBatch anaerobic reactors were used with TCS concentrations of 7.8, 15.7, 23.5, and 31.4 mg/L. These assays consisted in three successive feedings (I, II, and III), wherein the sludge was exposed to each TCS concentration and volatile fatty acid (VFA) substrate. For evaluation of the residual sludge activity during feeding III, only VFA was used. The results showed that the increase in TCS concentrations correlated with the reduction in methane (CH4) production. In this case, the minimum values were achieved for TCS concentration of 31.4 mg/L with CH4 levels between 101.9 and 245.3 during feedings I, II, and III. Regarding the effect of TCS on VFA consumption, an inhibitory effect was detected for TCS concentrations of 23.5 and 31.4 mg/L, with concentrations of acetic, butyric, and propionic acids at the end of the assay (37 d) between 153.6 and 206.8, 62.5 and 60.1, and 93.4 and 110 mg/L, respectively. Regarding the removal of TCS during AD, these values were above 47%.ConclusionTCS is an inhibitor of methanogenic activity with a decrease between 63 and 70% during the different feedings. The CH4 production was not recovered during feeding III, with inhibition percentages of 21–72%.How to cite: Reyes-Contreras C, Leiva AM, Vidal G. Evaluation of triclosan toxic effects on the methanogenic activity. Electron J Biotechnol 2019;39. https://doi.org/10.1016/j.ejbt.2019.03.006.  相似文献   

3.
BackgroundThe determination of kinetic parameters and the development of mathematical models are of great interest to predict the growth of microalgae, the consumption of substrate and the design of photobioreactors focused on CO2 capture. However, most of the models in the literature have been developed for CO2 concentrations below 10%.ResultsA nonaxenic microalgal consortium was isolated from landfill leachate in order to study its kinetic behavior using a dynamic model. The model considered the CO2 mass transfer from the gas phase to the liquid phase and the effect of light intensity, assimilated nitrogen concentration, ammonium concentration and nitrate concentration. The proposed mathematical model was adjusted with 13 kinetic parameters and validated with a good fit obtained between experimental and simulated data.ConclusionsGood results were obtained, demonstrating the robustness of the proposed model. The assumption in the model of DIC inhibition in the ammonium and nitrate uptakes was correct, so this aspect should be considered when evaluating the kinetics with microalgae with high inlet CO2 concentrations.How to cite: Saldarriaga L F, Almenglo F, Ramírez M, et al. Kinetic characterization and modeling of a microalgae consortium isolated from landfill leachate under a high CO2 concentration in a bubble column photobioreactor. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.006.  相似文献   

4.
BackgroundThis work studied how the exposure to an unusual substrate forced a change in microbial populations during anaerobic fermentation of crude glycerol, a by-product of biodiesel production, with freshwater sediment used as an inoculum.ResultsThe microbial associations almost completely (99.9%) utilized the glycerol contained in crude glycerol 6 g L−1 within four days, releasing gases, organic acids (acetic, butyric) and alcohols (ethanol, n-butanol) under anaerobic conditions. In comparison with control medium without glycerol, adding crude glycerol to the medium increased the amount of ethanol and n-butanol production and it was not significantly affected by incubation temperature (28 °C or 37 °C), nor incubation time (4 or 8 d), but it resulted in reduced amount of butyric acid. Higher volume of gas was produced at 37 °C despite the fact that the overall bacterial count was smaller than the one measured at 20 °C. Main microbial phyla of the inoculum were Actinobacteria, Proteobacteria and Firmicutes. During fermentation, significant changes were observed and Firmicutes, especially Clostridium spp., began to dominate, and the number of Actinobacteria and Gammaproteobacteria decreased accordingly. Concentration of Archaea decreased, especially in medium with crude glycerol. These changes were confirmed both by culturing and culture-independent (concentration of 16S rDNA) methods.ConclusionsCrude glycerol led to the adaptation of freshwater sediment microbial populations to this substrate. Changes of microbial community were a result of a community adaptation to a new source of carbon.How to cite: Paiders M, Nikolajeva V, Makarenkova G, et al. Changes in freshwater sediment microbial populations during fermentation of crude glycerol. Electron J Biotechnol 2021;49. https://doi.org/10.1016/j.ejbt.2020.10.007  相似文献   

5.
BackgroundThe intestinal bacterial community has an important role in maintaining human health. Dysbiosis is a key inducer of many chronic diseases including obesity and diabetes. Kunming mice are frequently used as a model of human disease and yet little is known about the bacterial microbiome resident to the gastrointestinal tract.ResultsWe undertook metagenomic sequencing of the luminal contents of the stomach, duodenum, jejunum, ileum, cecum, colon, and rectum of Kunming mice. Firmicutes was the dominant bacterial phylum of each intestinal tract and Lactobacillus the dominant genus. However, the bacterial composition differed among the seven intestinal tracts of Kunming mice. Compared with the small intestine, the large intestine bacterial community of Kunming mice is more stable and diverse.ConclusionsTo our knowledge, ours is the first study to systematically describe the gastrointestinal bacterial composition of Kunming mice. Our findings provide a better understanding of the bacterial composition of Kunming mice and serves as a foundation for the study of precision medicine.How to cite: Han X, Shao H, Wang Y, et al. Composition of the bacterial community in the gastrointestinal tract of Kunming mice. Electron J Biotechnol 2020;43. https://doi.org/10.1016/j.ejbt.2019.11.003  相似文献   

6.
BackgroundA key challenge for manufacturers of pro-health food containing active probiotic microorganisms is to develop a product with attractive sensory features along with maintenance of declared number of microorganisms during storage and transfer by alimentary tract.ResultsThe highest concentration of polyphenols was observed in snacks without an additive of probiotics as well as those with an additive of L. rhamnosus and B. animalis bacteria and concentration of these compounds increased by 9.5% during six months of storage. None of the products distinguished itself in the sensorial assessment although each was assessed positively. The number of microorganisms was stable and comparatively high during six months of storage at a room temperature and in cooling conditions (108 cfu/g). In the digestion model, an influence of aggressive digestion conditions was examined in the alimentary tract on the number of microorganisms, which allowed to arrange strains from the most resistant (S. boulardii) to the most sensitive (B. breve). It must be noted that currently on the market there is no available snack containing probiotic yeast as well as there is no literature data on works on such formulation of food.ConclusionsIn the newly developed snack made of chocolate, in which sugar has been replaced with maltitol, a raw material was added in the form of raspberry, prebiotic in the form of inulin and a strain of probiotic bacteria, including the unprecedented so far S. boulardii, which stands a high chance to occupy a good place on the market of functional food.How to cite: Cielecka-Piontek J, Dziedziński M, Szczepaniak O, et al. Survival of commercial probiotic strains and their effect on dark chocolate synbiotic snack with raspberry content during the storage and after simulated digestion. Electron J Biotechnol 2020;48. https://doi.org/10.1016/j.ejbt.2020.09.005.  相似文献   

7.
BackgroundPoly-3-hydroxybutyrate (PHB) can be efficiently produced in recombinant Escherichia coli by the overexpression of an operon (NphaCAB) encoding PHB synthetase. Strain improvement is considered to be one of critical factors to lower the production cost of PHB in recombinant system. In this study, one of key regulators that affect the cell growth and PHB content was confirmed and analyzed.ResultS17-3, a mutant E. coli strain derived from S17-1, was found to be able to achieve high cell density when expressing NphaCAB with the plasmid pBhya-CAB. Whole genome sequencing of S17-3 revealed genetic alternations on the upstream regions of csrA, encoding a global regulator cross-talking between stress response, catabolite repression and other metabolic activities. Deletion of csrA or expression of mutant csrA resulted in improved cell density and PHB content.ConclusionThe impact of gene deletion of csrA was determined, dysfunction of the regulators improved the cell density of recombinant E. coli and PHB production, however, the detail mechanism needs to be further clarified.How to cite: Wu H, Li S, Ji M, et al. Improvement of polyhydroxybutyrate production by deletion of csrA in Escherichia coli. Electron J Biotechnol 2020;46. https://doi.org/10.1016/j.ejbt.2020.04.005.  相似文献   

8.
BackgroundPyruvic acid (PA), a vital α-oxocarboxylic acid, plays an important role in energy and carbon metabolism. The oleaginous yeast Yarrowia lipolytica (Y. lipolytica) has considerable potential for the production of PA. An increased NaCl concentration reportedly increases the biomass and PA yield of Y. lipolytica.ResultsTo increase the yield of PA, the NaCl-tolerant Y. lipolytica A4 mutant was produced using the atmospheric and room temperature plasma method of mutation. The A4 mutant showed growth on medium containing 160 g/L NaCl. The PA yield of the A4 mutant reached 97.2 g/L at 120 h (0.795 g/g glycerol) in a 20-L fermenter with glycerol as the sole carbon source, which was 28.9% higher than that of the parental strain.ConclusionThe PA yield from Y. lipolytica can be improved by increasing its NaCl tolerance.How to cite: Yuan W, Lin X, Zhong S, et al. Enhanced pyruvic acid yield in an osmotic stress-resistant mutant of Yarrowia lipolytica. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.002.  相似文献   

9.
BackgroundTraditionally, microbial genome sequencing has been restrained to the species grown in pure culture. The development of culture-independent techniques over the last decade allows scientists to sequence microbial communities directly from environmental samples. Metagenomics is the study of complex genome by the isolation of DNA of the whole community. Next generation sequencing (NGS) of metagenomic DNA gives information about the microbial and taxonomical characterization of a particular niche. The objective of the present research is to study the microbial and taxonomical characterization of the metagenomic DNA, isolated from the frozen soil sample of a glacier in the north western Himalayas through NGS.ResultsThe glacier community comprised of 16 phyla with the representation of members belonging to Proteobacteria and Acidobacteria. The number of genes annotated through the Kyoto Encyclopedia of Genes and Genomes (KEGG), GO, Pfam, Clusters of Orthologous Groups of proteins (COGs), and FIG databases were generated by COGNIZER. The annotation of genes assigned in each group from the metagenomics data through COG database and the number of genes annotated in different pathways through KEGG database were reported.ConclusionResults indicate that the glacier soil taken in the present study, harbors taxonomically and metabolically diverse communities. The major bacterial group present in the niche is Proteobacteria followed by Acidobacteria, and Actinobacteria, etc. Different genes were annotated through COG and KEGG databases that integrate genomic, chemical, and systemic functional information.How to cite: Gupta V, Singh I, Rasool S, et al. Next Generation sequencing and microbiome’s taxonomical characterization of frozen soil of North Western Himalayas of Jammu and Kashmir, India. Electron J Biotechnol 2020;45. https://doi.org/10.1016/j.ejbt.2020.03.003.  相似文献   

10.
BackgroundSalep is obtained by grinding dried orchid tubers and used as a valuable ingredient in the food industry. Because of the glucomannan content of salep, it is thought to have prebiotic potential. However, there is little information in studies concerning the fermentation characteristics and potential prebiotic properties of salep. The objective of this study was to investigate the effect of salep on bifidobacterial growth by measuring the highest optical density (OD), calculating the specific growth rates, and determining the production of lactic acid and short-chain fatty acids (acetic, propionic, and butyric acid) as a result of bacterial fermentation.ResultThe OD and pH values obtained in this study showed that salep was utilized as a source of assimilable carbon and energy by the Bifidobacterium species (BS). All Bifidobacterium strains produced lactic, acetic, propionic, and butyric acid, indicating that salep is readily fermented by these bacteria. Salep at 1% (w/v) showed a similar effect on bifidobacterial growth as that promoted by 1% (w/v) glucose used as a traditional carbon source.ConclusionsBifidobacterium species can develop in media containing salep as well as in glucose and exhibit the potential to be used as new sources of prebiotics.How to cite: Usta-Gorgun B, Yilmaz-Ersan L. Short-chain fatty acid production by the Bifidobacterium species in the presence of salep. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.06.004.  相似文献   

11.
BackgroundFructose and single cell protein are important products for the food market. Abundant amounts of low-grade dates worldwide are annually wasted. In this study, highly concentrated fructose syrups and single cell protein were obtained through selective fermentation of date extracts by Saccharomyces cerevisiae.ResultsThe effect of air flow (0.1, 0.5, 0.75, 1, 1.25 and 1.5 vvm) and pH (4.5, 4.8, 5, 5.3 and 5.6) was investigated. Higher air flow led to lower fructose yield. The optimum cell mass production of 10 g/L was achieved at air flow of 1.25 vvm with the fructose yield of 91%. Similar cell mass production was obtained in the range pH of 5.0–5.6, while less cell mass was obtained at pH less than 5. Controlling the pH at 4.5, 5.0 and 5.3 failed to improve the production of cell mass which were 5.6, 5.9 and 5.4 g/L respectively; however, better fructose yield was obtained.ConclusionsExtension of the modified Gompertz enabled excellent predictions of the cell mass, fructose production and fructose fraction. The proposed model was also successfully validated against data from literatures. Thus, the model will be useful for wide application of biological processes.How to cite: Putra MD, Abasaeed AE, Al-Zahrani SM. Prospective production of fructose and single cell protein from date palm waste. Electron J Biotechnol 2020;48. https://doi.org/10.1016/j.ejbt.2020.09.007.  相似文献   

12.
BackgroundBiologically active peptides produced from fish wastes are gaining attention because their health benefits. Proteases produced by halophilic microorganisms are considered as a source of active enzymes in high salt systems like fish residues. Hence, the aim of this study was the bioprospection of halophilic microorganisms for the production of proteases to prove their application for peptide production.ResultsHalophilic microorganisms were isolated from saline soils of Mexico and Bolivia. An enzymatic screening was carried out for the detection of lipases, esterases, pHB depolymerases, chitinases, and proteases. Most of the strains were able to produce lipases, esterases, and proteases, and larger hydrolysis halos were detected for protease activity. Halobacillus andaensis was selected to be studied for proteolytic activity production; the microorganism was able to grow on gelatin, yeast extract, skim milk, casein, peptone, fish muscle (Cyprinus carpio), and soy flour as protein sources, and among these sources, fish muscle protein was the best inducer of proteolytic activity, achieving a protease production of 571 U/mL. The extracellular protease was active at 50°C, pH 8, and 1.4 M NaCl and was inhibited by phenylmethylsulfonyl fluoride. The proteolytic activity of H. andaensis was used to hydrolyze fish muscle protein for peptide production. The peptides obtained showed a MW of 5.3 kDa and a radical scavenging ability of 10 to 30% on 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and a ferric reducing ability of plasma.ConclusionThe use of noncommercial extracellular protease produced by H. andaensis for biologically active peptide production using fish muscle as the protein source presents a great opportunity for high-value peptide production.How to cite: Delgado-García M, Flores-Gallegos AC, Kirchmayr M, et al. Bioprospection of proteases from Halobacillus andaensis for bioactive peptide production from fish muscle protein. Electron J Biotechnol 2019;39. https://doi.org/10.1016/j.ejbt.2019.03.001.  相似文献   

13.
BackgroundFermentation strategies for bioethanol production that use flocculating Saccharomyces cerevisiae yeast need to account for the mechanism by which inhibitory compounds, generated in the hydrolysis of lignocellulosic materials, are tolerated and detoxified by a yeast floc.ResultsDiffusion coefficients and first-order kinetic bioconversion rate coefficients were measured for three fermentation inhibitory compounds (furfural, hydroxymethylfurfural, and vanillin) in self-aggregated flocs of S. cerevisiae NRRL Y-265. Thièle-type moduli and internal effectiveness factors were obtained by simulating a simple steady-state spherical floc model.ConclusionsThe obtained values for the Thiéle moduli and internal effectiveness factors showed that the bioconversion rate of the inhibitory compounds is the dominant phenomenon over mass transfer inside the flocs.How to cite: Landaeta R, Acevedo F, Aroca G. Effective diffusion coefficients and bioconversion rates of inhibitory compounds in flocs of Saccharomyces cerevisiae. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.rjbt.2019.08.001  相似文献   

14.
BackgroundMicrobial oils produced by diverse microorganisms are being considered as alternative sources of triglycerides for biodiesel production. However, the standalone production of biodiesel from microorganisms is not currently economically feasible. In case of yeasts, the use of low-value nutrient sources in microbial production and the implementation of cost-efficient downstream processes could reduce costs and make microbial lipids competitive with other commodity-type oils in biodiesel production. Industrial biodiesel synthesis from oleaginous seeds is currently based on a multistep process. However, a simple process called in situ transesterification (ISTE), which takes place within the biomass without a previous lipid extraction step, is receiving increasing interest. In this work, the optimal conditions for an ISTE process to obtain biodiesel from previously selected oleaginous yeast (Rhodotorula graminis S1/S2) were defined using the response surface methodology (RSM).ResultsUsing the RSM approach, the optimal conditions for the maximum yield with minimum reaction time included a methanol-to-biomass ratio of 60:1, 0.4 M H2SO4, and incubation at 70°C for 3 h. The optimized in situ process yield was significantly higher (123%) than that obtained with a two-step method in which fatty acids from saponifiable lipids were first extracted and then esterified with methanol. The composition of the fatty acid methyl ester mixture obtained from R. graminis S1/S2 by ISTE met Uruguayan standards for biodiesel.ConclusionThe characteristics achieved by the optimized method make microbial oil a potential alternative for biodiesel production from yeast at an industrial scale.How to cite: Martinez-Silveira A, Villarreal R, Garmendia G, et al. Process conditions for a rapid in situ transesterification for biodiesel production from oleaginous yeasts. Electron J Biotechnol 2018;37. https://doi.org/10.1016/j.ejbt.2018.11.006.  相似文献   

15.
16.
BackgroundLawsonia intracellularis remains a problem for the swine industry worldwide. Previously, we designed and obtained a vaccine candidate against this pathogen based on the chimeric proteins: OMP1c, OMP2c, and INVASc. These proteins formed inclusion bodies when expressed in E. coli, which induced humoral and cellular immune responses in vaccinated pigs. Also, protection was demonstrated after the challenge. In this study, we established a production process to increase the yields of the three antigens as a vaccine candidate.ResultsBatch and fed-batch fermentations were evaluated in different culture conditions using a 2 L bioreactor. A fed-batch culture with a modified Terrific broth medium containing glucose instead of glycerol, and induced with 0.75 mM IPTG at 8 h of culture (11 g/L of biomass) raised the volumetric yield to 627.1 mg/L. Under these culture conditions, plasmid-bearing cells increased by 10% at the induction time. High efficiency in cell disruption was obtained at passage six using a high-pressure homogenizer and a bead mill. The total antigen recovery was 64% (400 mg/L), with a purity degree of 70%. The antigens retained their immunogenicity in pigs, inducing high antibody titers.ConclusionsConsidering that the antigen production process allowed an increment of more than 70-fold, this methodology constitutes a crucial step in the production of this vaccine candidate against L. intracellularis.How to cite: Salazar S, Gutiérrez N, Sánchez O, et al. Establishment of a production process for a novel vaccine candidate against Lawsonia intracellularis. Electron J Biotechnol 2021.https://doi.org/10.1016/j.ejbt.2021.01.002  相似文献   

17.
BackgroundBiohydrogen effluent contains a high concentration of volatile fatty acid (VFA) mainly as butyric, acetic, lactic and propionic acids. The presence of various VFAs (mixture VFAs) and their cooperative effects on two-stage biohythane production need to be further studied. The effect of VFA concentrations in biohydrogen effluent of palm oil mill effluent (POME) on methane yield in methane stage of biohythane production was investigated.ResultsThe methane yield obtained in low VFA loading (0.9 and 1.8 g/L) was 15–20% times greater than that of high VFA loading (3.6 and 4.7 g/L). Butyric acid at high concentrations (8 g/L) has the individual significantly negative effect the methane production process (P < 0.05). Lactic, acetic and butyric acid mixed with propionic acid at a concentration higher than 0.5 g/L has an interaction significantly negative effect on the methanogenesis process (P < 0.05). Inhibition condition had a negative effect on both bacteria and archaea with inhibited on Geobacillus sp., Thermoanaerobacterium thermosaccharolyticum, Methanoculleus thermophilus and Methanothermobacter delfuvii resulting in low methane yield.ConclusionPreventing the high concentration of butyric acid, and propionic acid in the hydrogenic effluent could enhance methane production in two-stage anaerobic digestion for biohythane production.  相似文献   

18.
BackgroundThis paper presents micro- and nano-fabrication techniques for leachable realgar using the extremophilic bacterium Acidithiobacillus ferrooxidans (A. ferrooxidans) DLC-5.ResultsRealgar nanoparticles of size ranging from 120 nm to 200 nm were successfully prepared using the high-energy ball mill instrument. A. ferrooxidans DLC-5 was then used to bioleach the particles. The arsenic concentration in the bioleaching system was found to be increased significantly when compared with that in the sterile control. Furthermore, in the comparison with the bioleaching of raw realgar, nanoparticles could achieve the same effect with only one fifth of the consumption.ConclusionEmphasis was placed on improving the dissolvability of arsenic because of the great potential of leachable realgar drug delivery in both laboratory and industrial settings.How to cite: Xu R, Song P, Wang J, et al. Bioleaching of realgar nanoparticles using the extremophilic bacterium Acidithiobacillus ferrooxidans DLC. Electron J Biotechnol 2019;38. https://doi.org/10.1016/j.ejbt.2019.01.001.  相似文献   

19.
BackgroundProtein glutaminase specifically deamidates glutamine residue in protein and therefore significantly improves protein solubility and colloidal stability of protein solution. In order to improve its preparation efficiency, we exploited the possibility for its secretory expression mediated by twin-arginine translocation (Tat) pathway in Bacillus licheniformis.ResultsThe B. licheniformis genome-wide twin-arginine signal peptides were analyzed. Of which, eleven candidates were cloned for construction of expression vectors to mediate the expression of Chryseobacterium proteolyticum protein glutaminase (PGA). The signal peptide of GlmU was confirmed that it significantly mediated PGA secretion into media with the maximum activity of 0.16 U/ml in Bacillus subtilis WB600. A mutant GlmU-R, being replaced the third residue aspartic acid of GlmU twin-arginine signal peptide with arginine by site-directed mutagenesis, mediated the improved secretion of PGA with about 40% increased (0.23 U/ml). In B. licheniformis CBBD302, GlmU-R mediated PGA expression in active form with the maximum yield of 6.8 U/ml in a 25-l bioreactor.ConclusionsPGA can be produced and secreted efficiently in active form via Tat pathway of B. licheniformis, an alternative expression system for the industrial-scale production of PGA.How to cite: Niu D, Li C, Wang P, et al. Twin-arginine signal peptide of Bacillus licheniformis GlmU efficiently mediated secretory expression of protein glutaminase. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.ejbt.2019.10.006  相似文献   

20.
BackgroundRice sheath blight (caused by Rhizoctonia solani) and tobacco mosaic virus are very important plant diseases, causing a huge loss in global crop production. Paenibacillus kribbensis PS04 is a broad-spectrum biocontrol agent, used for controlling these diseases. Previously, extracellular polysaccharides (EPS) from P. kribbensis PS04 had been purified and their structure was inferred to be fructosan. This study aimed to evaluate the effects of exogenous EPS treatment on plant–pathogen interactions.ResultsPlant defense genes such as phenylalanine ammonia-lyase, catalase, chitinase, allene oxide synthase, and PR1a proteins were significantly induced by exogenous EPS treatment. Moreover, subsequent challenge of EPS-pretreated plants with the pathogens (R. solani or tobacco mosaic virus) resulted in higher expression of defense-associated genes. Increased activities of defense-associated enzymes, total phenols, and flavonoids were also observed in EPS pretreated plants. The contents of malondialdehyde in plants, which act as indicator of lipid peroxidation, were reduced by EPS treatment.ConclusionsThis study comprehensively showed that EPS produced from P. kribbensis PS04 enhances disease resistance in plants by the activation of defense-associated genes as well as through the enhancement of activities of defense-related enzymes.How to citeCanwei S, Xiaoyun H, Ahmed N, et al. Fructosan form Paenibacillus kribbensis PS04 enhance disease resistance against Rhizoctonia solani and tobacco mosaic virus. Electron J Biotechnol 2020;47. https://doi.org/10.1016/j.ejbt.2020.07.002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号