首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
BackgroundYarrowia lipolytica is a nonconventional, dimorphic yeast with multiple biotechnological applications. Considering the size of Y. lipolytica cells and a plethora of its morphological forms (spherical cells or hyphae and pseudohyphae), it is highly difficult to select a suitable carrier for this useful microorganism. Bacterial cellulose (BC) is currently considered one of the most promising immobilization carriers. In the current study, the usefulness of oil- and emulsion-modified BCs as a carrier for Y. lipolytica immobilization was investigated. Static and agitated cultures were conducted in media supplemented with oil or emulsion to improve carrier porosity.ResultsIt was found that the application of oil- and emulsion-modified BCs correlated with significantly higher efficiency of Y. lipolytica immobilization and hence higher yield than the yield achieved with an unmodified carrier. Increased efficiency of immobilization correlated with BC porosity-related parameters, which, in turn, depended on the size of oil droplets introduced into the culture medium. Moreover, changes in porosity-related parameters caused by the addition of oil or emulsion to the medium were observed when the cultures were conducted only under static conditions and not under agitated conditions.ConclusionThe application of oil- and emulsion-modified BCs as carriers significantly increased the efficiency of Y. lipolytica immobilization as compared to unmodified BC. The addition of oil or emulsion to the culture medium can be a simple but effective method to modify the porosity of BC-based carriers.How to cite: Żywicka A, Wenelska K, Junka A, et al. An efficient method of Yarrowia lipolytica immobilization using oil- and emulsion-modified bacterial cellulose carrier. Electron J Biotechnol 2019;41. https://doi.org/10.1016/j.ejbt.2019.06.004.  相似文献   

2.
BackgroundThis work studied how the exposure to an unusual substrate forced a change in microbial populations during anaerobic fermentation of crude glycerol, a by-product of biodiesel production, with freshwater sediment used as an inoculum.ResultsThe microbial associations almost completely (99.9%) utilized the glycerol contained in crude glycerol 6 g L−1 within four days, releasing gases, organic acids (acetic, butyric) and alcohols (ethanol, n-butanol) under anaerobic conditions. In comparison with control medium without glycerol, adding crude glycerol to the medium increased the amount of ethanol and n-butanol production and it was not significantly affected by incubation temperature (28 °C or 37 °C), nor incubation time (4 or 8 d), but it resulted in reduced amount of butyric acid. Higher volume of gas was produced at 37 °C despite the fact that the overall bacterial count was smaller than the one measured at 20 °C. Main microbial phyla of the inoculum were Actinobacteria, Proteobacteria and Firmicutes. During fermentation, significant changes were observed and Firmicutes, especially Clostridium spp., began to dominate, and the number of Actinobacteria and Gammaproteobacteria decreased accordingly. Concentration of Archaea decreased, especially in medium with crude glycerol. These changes were confirmed both by culturing and culture-independent (concentration of 16S rDNA) methods.ConclusionsCrude glycerol led to the adaptation of freshwater sediment microbial populations to this substrate. Changes of microbial community were a result of a community adaptation to a new source of carbon.How to cite: Paiders M, Nikolajeva V, Makarenkova G, et al. Changes in freshwater sediment microbial populations during fermentation of crude glycerol. Electron J Biotechnol 2021;49. https://doi.org/10.1016/j.ejbt.2020.10.007  相似文献   

3.
BackgroundThe use of agro-industrial wastes to produce high value-added biomolecules such as biosurfactants is a promising approach for lowering the total costs of production. This study aimed to produce biosurfactants using Rhizopus arrhizus UCP 1607, with crude glycerol (CG) and corn steep liquor (CSL) as substrates. In addition, the biomolecule was characterized, and its efficiency in removing petroderivatives from marine soil was investigated.ResultsA 22 factorial design was applied, and the best condition for producing the biosurfactant was determined in assay 4 (3% CG and 5% CSL). The biosurfactant reduced the surface tension of water from 72 to 28.8 mN/m and produced a yield of 1.74 g/L. The preliminary biochemical characterization showed that the biosurfactant consisted of proteins (38.0%), carbohydrates (35.4%), and lipids (5.5%). The compounds presented an anionic character, nontoxicity, and great stability for all conditions tested. The biomolecule displayed great ability in dispersing hydrophobic substrates in water, thereby resulting in 53.4 cm2 ODA. The best efficiency of the biosurfactant in removing the pollutant diesel oil from marine soil was 79.4%.ConclusionsThis study demonstrated the ability of R. arrhizus UCP1607 to produce a low-cost biosurfactant characterized as a glycoprotein and its potential use in the bioremediation of the hydrophobic diesel oil pollutant in marine soil.How to cite: Pele MA, Ribeaux DR, Vieira ER, et al. Conversion of renewable substrates for biosurfactant production by Rhizopus arrhizus UCP 1607 and enhancing the removal of diesel oil from marine soil. Electron J Biotechnol 2019;38. https://doi.org/10.1016/j.ejbt.2018.12.003.  相似文献   

4.
BackgroundFreeze-drying is known as one of the best methods to preserve bacterial strains. Protectant is the key factor affecting the survival rate of freeze-dried strains. In addition, salinity, bacterial suspension concentration, drying time, and other factors can also affect the survival rate of strains to varying degrees. At present, there are relatively few studies on freeze-drying preservation of marine bacteria. In the present study, we performed the freeze-drying protectant screening and optimized the preservation conditions for Pseudoalteromonas nigrifaciens, which is widely distributed in marine environment. The protective effects of the screened protectants were verified by 18 other marine bacterial strains.ResultsThe results indicated that the combination of 5.0% (w/v) lactose, 5.0% (w/v) mannitol, 5.0% (w/v) trehalose, 10.0% (w/v) skim milk powder, 0.5% (w/v) ascorbic acid and 0.5% (w/v) gelatin was the best choice for the preservation of P. nigrifaciens. The suggested salinity and concentration of initial cell suspension were 10 g/L NaCl and 1.0 × 109 CFU/mL, respectively. Furthermore, stationary-phase cells were the best choice for the freeze-drying process. The highest survival rate of P. nigrifaciens reached 52.8% when using 5–10% (w/v) skim milk as rehydration medium. Moreover, the other 18 marine strains belonging to Pseudoalteromonas, Vibrio, Photobacterium, Planomicrobium, Edwardsiella, Enterococcus, Bacillus, and Saccharomyces were freeze-dried under the abovementioned conditions. Their survival rates were 2.3–95.1%.ConclusionCollectively, our results supported that the protectant mixture and parameters were beneficial for lyophilization of marine bacteria.How to cite: Zhang Z, Yu Y, Wang Y, et al. Development of new protocol for freeze-drying preservation of Pseudoalteromonas nigrifaciens and its protective effect on other marine bacteria. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2019.12.006.  相似文献   

5.
BackgroundProdigiosin has been demonstrated to be an important candidate in investigating anticancer drugs and in many other applications in recent years. However, industrial production of prodigiosin has not been achieved. In this study, we found a prodigiosin-producing strain, Serratia marcescens FZSF02, and its fermentation strategies were studied to achieve the maximum yield of prodigiosin.ResultsWhen the culture medium consisted of 16.97 g/L of peanut powder, 16.02 g/L of beef extract, and 11.29 mL/L of olive oil, prodigiosin reached a yield of 13.622 ± 236 mg/L after culturing at 26 °C for 72 h. Furthermore, when 10 mL/L olive oil was added to the fermentation broth at the 24th hour of fermentation, the maximum prodigiosin production of 15,420.9 mg/L was obtained, which was 9.3-fold higher than the initial level before medium optimization. More than 60% of the prodigiosin produced with this optimized fermentation strategy was in the form of pigment pellets. To the best of our knowledge, this is the first report on this phenomenon of pigment pellet formation, which made it much easier to extract prodigiosin at low cost. Prodigiosin was then purified and identified by absorption spectroscopy, HPLC, and LCMS. Purified prodigiosin obtained in this study showed anticancer activity in separate experiments on several human cell cultures: A549, K562, HL60, HepG2, and HCT116.ConclusionsThis is a promising strain for producing prodigiosin. The prodigiosin has potential in anticancer medicine studies.How to cite: Lin C, Jia X, Fang Y, et al. Enhanced production of prodigiosin by Serratia marcescens FZSF02 in the form of pigment pellets. Electron J Biotechnol 2019;40. https://doi.org/10.1016/j.ejbt.2019.04.007  相似文献   

6.
BackgroundProtein glutaminase specifically deamidates glutamine residue in protein and therefore significantly improves protein solubility and colloidal stability of protein solution. In order to improve its preparation efficiency, we exploited the possibility for its secretory expression mediated by twin-arginine translocation (Tat) pathway in Bacillus licheniformis.ResultsThe B. licheniformis genome-wide twin-arginine signal peptides were analyzed. Of which, eleven candidates were cloned for construction of expression vectors to mediate the expression of Chryseobacterium proteolyticum protein glutaminase (PGA). The signal peptide of GlmU was confirmed that it significantly mediated PGA secretion into media with the maximum activity of 0.16 U/ml in Bacillus subtilis WB600. A mutant GlmU-R, being replaced the third residue aspartic acid of GlmU twin-arginine signal peptide with arginine by site-directed mutagenesis, mediated the improved secretion of PGA with about 40% increased (0.23 U/ml). In B. licheniformis CBBD302, GlmU-R mediated PGA expression in active form with the maximum yield of 6.8 U/ml in a 25-l bioreactor.ConclusionsPGA can be produced and secreted efficiently in active form via Tat pathway of B. licheniformis, an alternative expression system for the industrial-scale production of PGA.How to cite: Niu D, Li C, Wang P, et al. Twin-arginine signal peptide of Bacillus licheniformis GlmU efficiently mediated secretory expression of protein glutaminase. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.ejbt.2019.10.006  相似文献   

7.
BackgroundFructose and single cell protein are important products for the food market. Abundant amounts of low-grade dates worldwide are annually wasted. In this study, highly concentrated fructose syrups and single cell protein were obtained through selective fermentation of date extracts by Saccharomyces cerevisiae.ResultsThe effect of air flow (0.1, 0.5, 0.75, 1, 1.25 and 1.5 vvm) and pH (4.5, 4.8, 5, 5.3 and 5.6) was investigated. Higher air flow led to lower fructose yield. The optimum cell mass production of 10 g/L was achieved at air flow of 1.25 vvm with the fructose yield of 91%. Similar cell mass production was obtained in the range pH of 5.0–5.6, while less cell mass was obtained at pH less than 5. Controlling the pH at 4.5, 5.0 and 5.3 failed to improve the production of cell mass which were 5.6, 5.9 and 5.4 g/L respectively; however, better fructose yield was obtained.ConclusionsExtension of the modified Gompertz enabled excellent predictions of the cell mass, fructose production and fructose fraction. The proposed model was also successfully validated against data from literatures. Thus, the model will be useful for wide application of biological processes.How to cite: Putra MD, Abasaeed AE, Al-Zahrani SM. Prospective production of fructose and single cell protein from date palm waste. Electron J Biotechnol 2020;48. https://doi.org/10.1016/j.ejbt.2020.09.007.  相似文献   

8.
BackgroundLawsonia intracellularis remains a problem for the swine industry worldwide. Previously, we designed and obtained a vaccine candidate against this pathogen based on the chimeric proteins: OMP1c, OMP2c, and INVASc. These proteins formed inclusion bodies when expressed in E. coli, which induced humoral and cellular immune responses in vaccinated pigs. Also, protection was demonstrated after the challenge. In this study, we established a production process to increase the yields of the three antigens as a vaccine candidate.ResultsBatch and fed-batch fermentations were evaluated in different culture conditions using a 2 L bioreactor. A fed-batch culture with a modified Terrific broth medium containing glucose instead of glycerol, and induced with 0.75 mM IPTG at 8 h of culture (11 g/L of biomass) raised the volumetric yield to 627.1 mg/L. Under these culture conditions, plasmid-bearing cells increased by 10% at the induction time. High efficiency in cell disruption was obtained at passage six using a high-pressure homogenizer and a bead mill. The total antigen recovery was 64% (400 mg/L), with a purity degree of 70%. The antigens retained their immunogenicity in pigs, inducing high antibody titers.ConclusionsConsidering that the antigen production process allowed an increment of more than 70-fold, this methodology constitutes a crucial step in the production of this vaccine candidate against L. intracellularis.How to cite: Salazar S, Gutiérrez N, Sánchez O, et al. Establishment of a production process for a novel vaccine candidate against Lawsonia intracellularis. Electron J Biotechnol 2021.https://doi.org/10.1016/j.ejbt.2021.01.002  相似文献   

9.
10.
BackgroundMilk whey, a byproduct of the dairy industry has a negative environmental impact, can be used as a raw material for added-value compounds such as galactooligosaccharides (GOS) synthesis by β-galactosidases.ResultsB-gal42 from Pantoea anthophila strain isolated from tejuino belonging to the glycosyl hydrolase family GH42, was overexpressed in Escherichia coli and used for GOS synthesis from lactose or milk whey. Crude cell-free enzyme extracts exhibited high stability; they were employed for GOS synthesis reactions. In reactions with 400 g/L lactose, the maximum GOS yield was 40% (w/w) measured by HPAEC-PAD, corresponding to 86% of conversion. This enzyme had a strong predilection to form GOS with β(1 → 6) and β(1 → 3) galactosyl linkages. Comparing GOS synthesis between milk whey and pure lactose, both of them at 300 g/L, these two substrates gave rise to a yield of 38% (60% of lactose conversion) with the same product profile determined by HPAEC-PAD.ConclusionsB-gal42 can be used on whey (a cheap lactose source) to produce added value products such as galactooligosaccharides.How to cite: Yañez-Ñeco CV, Cervantes FV, Amaya-Delgado L, et al. Synthesis of β(1→3) and β(1→6) galactooligosaccharides from lactose and whey using a recombinant β-galactosidase from Pantoea anthophila. Electron J Biotechnol 2021;49. https://dx.doi.org/10.1016/j.ejbt.2020.10.004  相似文献   

11.
BackgroundThe harmful effects of type 2 diabetes mellitus and its complications have become a major global public health problem. In this study, the effects of Momordica charantia saponins (MCS) on lipid metabolism, oxidative stress, and insulin signaling pathway in type 2 diabetic rats were investigated.ResultsMCS could attenuate the tendency of weight loss of the model rats. It could also improve glucose tolerance; reduce fasting blood glucose, nonesterified fatty acid, triglyceride, and total cholesterol; and increase the insulin content and insulin sensitivity index of the rats. The activity of superoxide dismutase and catalase increased, and the content of malondialdehyde decreased in the liver and pancreas tissues of rats in MCS-treated groups significantly. In addition, the expression of p-IRS-1 (Y612) and p-Akt (S473) increased, and the expression of p-IRS-1 (S307) decreased in the liver tissues and pancreas tissues of rats in MCS-treated groups significantly.ConclusionMCS has an antidiabetic effect, which may be related to its improving the lipid metabolism disorder, reducing oxidative stress level, and regulating the insulin signaling pathway.How to cite: Jiang S, Xu L, Xu X, et al. Anti-diabetic effect of Momordica charantia saponins in rats induced by high-fat diet combined with STZ. Electron J Biotechnol 2020;43. https://doi.org/10.1016/j.ejbt.2019.12.001.  相似文献   

12.
13.
BackgroundOleaginous yeasts can be grown on different carbon sources, including lignocellulosic hydrolysate containing a mixture of glucose and xylose. However, not all yeast strains can utilize both the sugars for lipogenesis. Therefore, in this study, efforts were made to isolate dual sugar-utilizing oleaginous yeasts from different sources.ResultsA total of eleven isolates were obtained, which were screened for their ability to utilize various carbohydrates for lipogenesis. One promising yeast isolate Trichosporon mycotoxinivorans S2 was selected based on its capability to use a mixture of glucose and xylose and produce 44.86 ± 4.03% lipids, as well as its tolerance to fermentation inhibitors. In order to identify an inexpensive source of sugars, nondetoxified paddy straw hydrolysate (saccharified with cellulase), supplemented with 0.05% yeast extract, 0.18% peptone, and 0.04% MgSO4 was used for growth of the yeast, resulting in a yield of 5.17 g L−1 lipids with conversion productivity of 0.06 g L−1 h−1. Optimization of the levels of yeast extract, peptone, and MgSO4 for maximizing lipid production using Box–Behnken design led to an increase in lipid yield by 41.59%. FAME analysis of single cell oil revealed oleic acid (30.84%), palmitic acid (18.28%), and stearic acid (17.64%) as the major fatty acids.ConclusionThe fatty acid profile illustrates the potential of T. mycotoxinivorans S2 to produce single cell oil as a feedstock for biodiesel. Therefore, the present study also indicated the potential of selected yeast to develop a zero-waste process for the complete valorization of paddy straw hydrolysate without detoxification.How to cite: Sagia S, Sharma A, Singh S, et al. Single cell oil production by a novel yeast Trichosporon mycotoxinivorans for complete and ecofriendly valorization of paddy straw. Electronic Journal of Biotechnology 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.009.  相似文献   

14.
BackgroundAmmonium stress is a prime limiting phenomenon that occurs during methane formation from poultry manure. It is caused by elevated ammonium nitrogen concentrations that result from substrate decomposition. The amounts of methane formed depend on the activity of methanogenic microbes.ResultsDuring the research reported in this paper, the response of a mesophilic consortium inhabiting a biogas reactor to rising load of poultry manure was investigated. The taxonomic composition of bacterial population was mostly typical, however syntrophic bacteria were not detected. This absence resulted in limitation of succession of some methanogenic microorganisms, especially obligate hydrogenotrophs. The methanogenic activity of the consortium was totally dependent on the activity of Methanosaeta. Inhibition of methanoganesis was noticed at ammonium nitrogen concentration of 3.68 g/L, total cessation occurred at 5.45 g/L. Significant amounts of acetic acid in the fermentation pulp accompanied the inhibition.ConclusionsThe effectiveness of the consortium was totally dependent on the metabolic activity of the acetoclastic Methanoseata genus and lack of SAOB did not allow hydrogenotrophic methanogens to propagate and lead to cessation of biogas production at an elevated ammonium concentration at which acetoclastic methanogens were inhibited.How to cite: Świątek M, Lewicki A, Szymanowska D, et al. The effect of introduction of chicken manure on the biodiversity and performance of an anaerobic digester. Electron J Biotechnol 2019;37. https://doi.org/10.1016/j.ejbt.2018.11.002.  相似文献   

15.
BackgroundFuels and chemicals from renewable feedstocks have a growing demand, and acetone, butanol and ethanol (ABE) are some relevant examples. These molecules can be produced by the bacterial fermentation process using hydrolysates generated from lignocellulosic biomass as sugarcane bagasse, one of the most abundant sources of lignocellulosic biomass in Brazil. It originates as a residue in mills and distilleries in the production of sugar and ethanol.ResultsIn the present work, two strategies to generate hydrolysates of sugarcane bagasse were adopted. The fermentation of the first hydrolysate by Clostridium acetobutylicum DSM 6228 resulted in final concentrations of butanol, acetone and ethanol of 6.4, 4.5 and 0.6 g/L, respectively. On the other hand, the second hydrolysate presented better results (averages of 9.1, 5.5 and 0.8 g/L, respectively), even without the need for nutrient supplementation, since key elements were already present in the medium. The productivity (QP) and yield (YP/S) of the solvents with second hydrolysate were 0.5 g/L·h-1 and 0.4 g/g, respectively.ConclusionsThe results described herein open new perspectives for the production of important molecules from residual lignocellulosic biomass for the fuel and chemical industries within the context of second-generation biorefinery.How to cite: Gomes AC, Rodrigues MI, Passos DF, et al. Acetone-butanol-ethanol fermentation from sugarcane bagasse hydrolysates: utilization of C5 and C6 sugars. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.ejbt.2019.10.004.  相似文献   

16.
BackgroundBiosurfactants are biomolecules that have the potential to be applied in food formulations due to their low toxicity and ability to improve sensory parameters. Considering the ability of yeasts to produce biosurfactants with food-friendly properties, the aim of the present study was to apply a biosurfactant produced by Candida utilis in the formulation of cookies.ResultsThe biosurfactant was obtained with a yield of 24.22 ± 0.23 g/L. The characterization analysis revealed that the structure of a metabolized fatty acid with high oleic acid content (68.63 ± 0.61%), and the thermogravimetric analysis demonstrated good stability at temperatures lower than 200°C, potential for food applications. The biosurfactant also exhibited satisfactory antioxidant activity at concentrations evaluated, without cytotoxic potential for cell strains, L929 and RAW 264.7, according to the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The incorporation of the surfactant into the dough of a standard cookie formulation to replace animal fat was carried out, achieving a softer, spongier product without significantly altering the physical and physicochemical properties or energy value.ConclusionThe thermal stability and antioxidant activity of the biosurfactant produced by C. utilis were verified, besides the positive contribution in the texture analysis of the cookies. Therefore, this biomolecule presents itself as a potential ingredient in flour-based sweet food formulations. How to cite: Ribeiro BG, de Veras BO, Aguiar JS, et al. Biosurfactant produced by Candida utilis UFPEDA1009 with potential application in cookie formulation. Electron J Biotechnol 2020;46. https://doi.org/10.1016/j.ejbt.2020.05.001.  相似文献   

17.
BackgroundCoconut tissues consist of a complex network of polysaccharides, proteins, polyphenols, and lipids that can bind to nucleic acids and pose difficulty in isolation. Certainly, a vigorous method is required to isolate high quality and quantity of RNA from such tissues for the purpose of downstream experiments. In this paper, we discuss a newly developed method for the Isolation of RNA from Complex Matrices (IRCM) method from coconut tissues.ResultsThe method is robust, cheap, and efficient for the extraction of quality RNA in high quantities from the solid endosperm of stored and fresh coconut (150 μg/g FW with A260/280 = 1.89 and 247.5 μg/g FW with A260/280 = 1.91), coconut apple (263.8 μg/g FW with A260/280 = 1.97), and coconut bud (1052.5 μg/g FW with A260/280 = 2.00). The other well established methods, such as Method of RNA Isolation from Palm (MRIP), Cetyl Trimethyl Ammonium Bromide (CTAB), TRIZOL, and RNA plant kit failed to isolate quality RNA in appreciable quantities from the coconut tissues. Furthermore, the resultant RNA performed well in the downstream experiment, that is, RT-PCR for the production and amplification of cDNA.ConclusionsFrom the study, we concluded that the present method will play a vital role in the extraction of high quality RNA from complex matrices in a short time.How to cite: Iqbal A, Yang Y, Wu Y, et al. An easy and robust method for the isolation of high quality RNA from coconut tissues. Electron J Biotechnol 2020;48. https://doi.org/10.1016/j.ejbt.2020.09.008  相似文献   

18.
BackgroundBiotechnological processes are part of modern industry as well as stricter environmental requirements. The need to reduce production costs and pollution demands for alternatives that involve the integral use of agro-industrial waste to produce bioactive compounds. The citrus industry generates large amounts of wastes due to the destruction of the fruits by microorganisms and insects together with the large amounts of orange waste generated during the production of juice and for sale fresh. The aim of this study was used orange wastes rich in polyphenolic compounds can be used as source carbon of Aspergillus fumigatus MUM 1603 to generate high added value compounds, for example, ellagic acid and other molecules of polyphenolic origin through submerged fermentation system.ResultsThe orange peel waste had a high concentration of polyphenols, 28% being condensed, 27% ellagitannins, 25% flavonoids and 20% gallotannins. The major polyphenolic compounds were catechin, EA and quercetin. The conditions, using an experimental design of central compounds, that allow the production of the maximum concentration of EA (18.68 mg/g) were found to be: temperature 30°C, inoculum 2 × 107 (spores/g) and orange peel polyphenols 6.2 (g/L).ConclusionThe submerged fermentation process is an effective methodology for the biotransformation of molecules present in orange waste to obtain high value-added as ellagic acid that can be used as powerful antioxidants, antibacterial and other applications.How to cite: Sepúlveda L, Laredo-Alcalá E, Buenrostro-Figueroa JJ, et al. Ellagic acid production using polyphenols from orange peel waste by submerged fermentation. Electron J Biotechnol 2020;43. https://doi.org/10.1016/j.ejbt.2019.11.002.  相似文献   

19.
BackgroundThe intestinal bacterial community has an important role in maintaining human health. Dysbiosis is a key inducer of many chronic diseases including obesity and diabetes. Kunming mice are frequently used as a model of human disease and yet little is known about the bacterial microbiome resident to the gastrointestinal tract.ResultsWe undertook metagenomic sequencing of the luminal contents of the stomach, duodenum, jejunum, ileum, cecum, colon, and rectum of Kunming mice. Firmicutes was the dominant bacterial phylum of each intestinal tract and Lactobacillus the dominant genus. However, the bacterial composition differed among the seven intestinal tracts of Kunming mice. Compared with the small intestine, the large intestine bacterial community of Kunming mice is more stable and diverse.ConclusionsTo our knowledge, ours is the first study to systematically describe the gastrointestinal bacterial composition of Kunming mice. Our findings provide a better understanding of the bacterial composition of Kunming mice and serves as a foundation for the study of precision medicine.How to cite: Han X, Shao H, Wang Y, et al. Composition of the bacterial community in the gastrointestinal tract of Kunming mice. Electron J Biotechnol 2020;43. https://doi.org/10.1016/j.ejbt.2019.11.003  相似文献   

20.
BackgroundPoly-3-hydroxybutyrate (PHB) can be efficiently produced in recombinant Escherichia coli by the overexpression of an operon (NphaCAB) encoding PHB synthetase. Strain improvement is considered to be one of critical factors to lower the production cost of PHB in recombinant system. In this study, one of key regulators that affect the cell growth and PHB content was confirmed and analyzed.ResultS17-3, a mutant E. coli strain derived from S17-1, was found to be able to achieve high cell density when expressing NphaCAB with the plasmid pBhya-CAB. Whole genome sequencing of S17-3 revealed genetic alternations on the upstream regions of csrA, encoding a global regulator cross-talking between stress response, catabolite repression and other metabolic activities. Deletion of csrA or expression of mutant csrA resulted in improved cell density and PHB content.ConclusionThe impact of gene deletion of csrA was determined, dysfunction of the regulators improved the cell density of recombinant E. coli and PHB production, however, the detail mechanism needs to be further clarified.How to cite: Wu H, Li S, Ji M, et al. Improvement of polyhydroxybutyrate production by deletion of csrA in Escherichia coli. Electron J Biotechnol 2020;46. https://doi.org/10.1016/j.ejbt.2020.04.005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号