首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
BackgroundAmmonium stress is a prime limiting phenomenon that occurs during methane formation from poultry manure. It is caused by elevated ammonium nitrogen concentrations that result from substrate decomposition. The amounts of methane formed depend on the activity of methanogenic microbes.ResultsDuring the research reported in this paper, the response of a mesophilic consortium inhabiting a biogas reactor to rising load of poultry manure was investigated. The taxonomic composition of bacterial population was mostly typical, however syntrophic bacteria were not detected. This absence resulted in limitation of succession of some methanogenic microorganisms, especially obligate hydrogenotrophs. The methanogenic activity of the consortium was totally dependent on the activity of Methanosaeta. Inhibition of methanoganesis was noticed at ammonium nitrogen concentration of 3.68 g/L, total cessation occurred at 5.45 g/L. Significant amounts of acetic acid in the fermentation pulp accompanied the inhibition.ConclusionsThe effectiveness of the consortium was totally dependent on the metabolic activity of the acetoclastic Methanoseata genus and lack of SAOB did not allow hydrogenotrophic methanogens to propagate and lead to cessation of biogas production at an elevated ammonium concentration at which acetoclastic methanogens were inhibited.How to cite: Świątek M, Lewicki A, Szymanowska D, et al. The effect of introduction of chicken manure on the biodiversity and performance of an anaerobic digester. Electron J Biotechnol 2019;37. https://doi.org/10.1016/j.ejbt.2018.11.002.  相似文献   

2.
BackgroundThe amount of municipal solid waste (MSW) gradually increased along with the rapid development of modern cities. A large amount of landfill leachate are generated with excessive chemical oxygen demand (COD), which create a great deal of pressure on the environment-friendly treatment process. Anaerobic digestion is an ideal technique to solve the above problem.ResultsA thermophilic granular sludge was successfully adapted for anaerobic digestion of MSW leachate (from an aging large-scale landfill) for methane production. The COD degradation efficiency improved by 81.8%, while the methane production rate reached 117.3 mL CH4/(g VS d), which was 2.34-fold more than the control condition. The bacterial and archaeal communities involved in the process were revealed by 16S rRNA gene high-throughput pyrosequencing. The richness of the bacterial community decreased in the process of thermophilic granular sludge, while the archaeal community structure presented a reverse phenomenon. The bacterial genus, Methanosaeta was the most abundant during the mesophilic process, while Methanobacterium, Methanoculleus, Methanosaeta and Methanosarcina were more evenly distributed. The more balanced community distribution between hydrogenotrophic and acetotrophic methanogens implied a closer interaction between the microbes, which further contributed to higher methane productivity. The detailed relationship between the key functional communities and anaerobic digestion performances were demonstrated via the multivariate canonical correspondence analysis.ConclusionsWith the assistance of adaptive thermophilic granular sludge, microbial community structure was more evenly distributed, while both of COD degradation rate and methane production was improved during anaerobic digestion of MSW landfill leachate.How to cite: Feng S, Hou S, Huang X, et al. Insights into the microbial community structure of anaerobic digestion of municipal solid waste landfill leachate for methane production by adaptive thermophilic granular sludge. Electron J Biotechnol 2019;39. https://doi.org/10.1016/j.ejbt.2019.04.001.  相似文献   

3.
BackgroundJuglone is a naphthoquinone currently obtained by chemical synthesis with biological activities including antitumor activity. Additionally, juglone is present in the green husk of walnut, which suggests evaluating the effect of GH extracts on carcinogenic cell lines.ResultsWalnut green husk ethanolic extract was obtained as 169.1 mg juglone/100 g Green Husk and antioxidant activity (ORAC) of 44,920 μmol Trolox Equivalent/100 g DW Green Husk. At 1 μM juglone in HL-60 cell culture, green husk extract showed an antiproliferative effect, but pure juglone did not; under these conditions, normal fibroblast cells were not affected. A dose-dependent effect on mitochondrial membrane potential loss was observed. Apoptosis of HL-60 was detected at 10 μM juglone. Despite high ORAC values, neither purified juglone nor the extract showed protective effects on HL-60 cells under oxidative conditions.ConclusionsGreen husk extract generates an antiproliferative effect in HL-60 cells, which is related to an induction of the early stages of apoptosis and a loss of mitochondrial membrane potential. The normal cells were not affected when juglone is present at concentrations of 1 μM, while at higher concentrations, there is loss of viability of both cancerous and healthy cells.How to cite: Soto-Maldonado C, Vergara-Castro M, Jara-Quezada J, et al. Polyphenolic extracts of walnut (Juglans regia) green husk containing juglone inhibit the growth of HL-60 cells and induce apoptosis. Electron J Biotechnol 2019;39. https://doi.org/10.1016/j.ejbt.2019.02.001.  相似文献   

4.
BackgroundThe determination of kinetic parameters and the development of mathematical models are of great interest to predict the growth of microalgae, the consumption of substrate and the design of photobioreactors focused on CO2 capture. However, most of the models in the literature have been developed for CO2 concentrations below 10%.ResultsA nonaxenic microalgal consortium was isolated from landfill leachate in order to study its kinetic behavior using a dynamic model. The model considered the CO2 mass transfer from the gas phase to the liquid phase and the effect of light intensity, assimilated nitrogen concentration, ammonium concentration and nitrate concentration. The proposed mathematical model was adjusted with 13 kinetic parameters and validated with a good fit obtained between experimental and simulated data.ConclusionsGood results were obtained, demonstrating the robustness of the proposed model. The assumption in the model of DIC inhibition in the ammonium and nitrate uptakes was correct, so this aspect should be considered when evaluating the kinetics with microalgae with high inlet CO2 concentrations.How to cite: Saldarriaga L F, Almenglo F, Ramírez M, et al. Kinetic characterization and modeling of a microalgae consortium isolated from landfill leachate under a high CO2 concentration in a bubble column photobioreactor. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.006.  相似文献   

5.
BackgroundThe 11S globulin from amaranth is the most abundant storage protein in mature seeds and is well recognized for its nutritional value. We used this globulin to engineer a new protein by adding a four valine-tyrosine antihypertensive peptide at its C-terminal end to improve its functionality. The new protein was named AMR5 and expressed in the Escherichia coli BL21-CodonPlus(DE3)-RIL strain using a custom medium (F8PW) designed for this work.ResultsThe alternative medium allowed for the production of 652 mg/L expressed protein at the flask level, mostly in an insoluble form, and this protein was subjected to in vitro refolding. The spectrometric analysis suggests that the protein adopts a β/α structure with a small increment of α-helix conformation relative to the native amaranth 11S globulin. Thermal and urea denaturation experiments determined apparent Tm and C1/2 values of 50.4°C and 3.04 M, respectively, thus indicating that the antihypertensive peptide insertion destabilized the modified protein relative to the native one. AMR5 hydrolyzed by trypsin and chymotrypsin showed 14- and 1.3-fold stronger inhibitory activity against angiotensin I-converting enzyme (IC50 of 0.034 mg/mL) than the unmodified protein and the previously reported amaranth acidic subunit modified with antihypertensive peptides, respectively.ConclusionThe inserted peptide decreases the structural stability of amaranth 11S globulin and improves its antihypertensive activity.How to cite: Espinosa-Hernández E, Morales-Camacho JI, Fernández-Velasco DA, et al. The insertion of bioactive peptides at the C terminal end of an 11S globulin changes the structural stability and improves the antihypertensive activity. Electron J Biotechnol 2019;37. https://doi.org/10.1016/j.ejbt.2018.11.001.  相似文献   

6.
BackgroundFuels and chemicals from renewable feedstocks have a growing demand, and acetone, butanol and ethanol (ABE) are some relevant examples. These molecules can be produced by the bacterial fermentation process using hydrolysates generated from lignocellulosic biomass as sugarcane bagasse, one of the most abundant sources of lignocellulosic biomass in Brazil. It originates as a residue in mills and distilleries in the production of sugar and ethanol.ResultsIn the present work, two strategies to generate hydrolysates of sugarcane bagasse were adopted. The fermentation of the first hydrolysate by Clostridium acetobutylicum DSM 6228 resulted in final concentrations of butanol, acetone and ethanol of 6.4, 4.5 and 0.6 g/L, respectively. On the other hand, the second hydrolysate presented better results (averages of 9.1, 5.5 and 0.8 g/L, respectively), even without the need for nutrient supplementation, since key elements were already present in the medium. The productivity (QP) and yield (YP/S) of the solvents with second hydrolysate were 0.5 g/L·h-1 and 0.4 g/g, respectively.ConclusionsThe results described herein open new perspectives for the production of important molecules from residual lignocellulosic biomass for the fuel and chemical industries within the context of second-generation biorefinery.How to cite: Gomes AC, Rodrigues MI, Passos DF, et al. Acetone-butanol-ethanol fermentation from sugarcane bagasse hydrolysates: utilization of C5 and C6 sugars. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.ejbt.2019.10.004.  相似文献   

7.
BackgroundPlastic waste is a serious problem because it is difficult to degrade, thereby leading to global environment problems. Poly(lactic acid) (PLA) is a biodegradable aliphatic polyester derived from renewable resources, and it can be degraded by various enzymes produced by microorganisms. This study focused on the scale-up and evaluated the bioprocess of PLA degradation by a crude microbial enzyme produced by Actinomadura keratinilytica strain T16-1 in a 5 L stirred tank bioreactor.ResultsPLA degradation after 72 h in a 5 L bioreactor by using the enzyme of the strain T16-1 under controlled pH conditions resulted in lactic acid titers (mg/L) of 16,651 mg/L and a conversion efficiency of 89% at a controlled pH of 8.0. However, the PLA degradation process inadvertently produced lactic acid as a potential inhibitor, as shown in our experiments at various concentrations of lactic acid. Therefore, the dialysis method was performed to reduce the concentration of lactic acid. The experiment with a dialysis bag achieved PLA degradation by weight loss of 99.93%, whereas the one without dialysis achieved a degradation of less than approximately 14.75%. Therefore, the dialysis method was applied to degrade a commercial PLA material (tray) with a conversion efficiency of 32%, which was 6-fold more than that without dialysis.ConclusionsThis is the first report demonstrating the scale-up of PLA degradation in a 5 L bioreactor and evaluating a potential method for enhancing PLA degradation efficiency.How to cite: Panyachanakul T, Sorachart B, Lumyong S, et al. Development of biodegradation process for Poly(DL-lactic acid) degradation by crude enzyme produced by Actinomadura keratinilytica strain T16-1. Electron J Biotechnol 2019;40. https://doi.org/10.1016/j.ejbt.2019.04.005  相似文献   

8.
BackgroundAlzheimer's disease (AD) is a chronic, progressive neurodegenerative disease. Recent studies have reported the close association between cognitive function in AD and purinergic receptors in the central nervous system. In the current study, we investigated the effect of CD73 inhibitor α, β-methylene ADP (APCP) on cognitive impairment of AD in mice, and to explore the potential underlying mechanisms.ResultsWe found that acute administration of Aβ142 (i.c.v.) resulted in a significant increase in adenosine release by using microdialysis study. Chronic administration of APCP (10, 30 mg/kg) for 20 d obviously mitigated the spatial working memory impairment of Aβ142-treated mice in both Morris water maze (MWM) test and Y-maze test. In addition, the extracellular adenosine production in the hippocampus was inhibited by APCP in Aβ-treated mice. Further analyses indicated expression of acetyltransferase (ChAT) in hippocampus of mice of was significantly reduced, while acetylcholinesterase (AChE) expression increased, which compared to model group. We observed that APCP did not significantly alter the NLRP3 inflammasome activity in hippocampus, indicating that anti-central inflammation seems not to be involved in APCP effect.ConclusionsIn conclusion, we report for the first time that inhibition of CD73 by APCP was able to protect against memory loss induced by Aβ142 in mice, which may be due to the decrease of CD73-driven adenosine production in hippocampus. Enhancement of central cholinergic function of the central nervous system may also be involved in the effects of APCP.How to cite: Song W, Tang Y, Wei L, et al. Protective effect of CD73 inhibitor α, β-methylene ADP against amyloid-β-Induced cognitive impairment by inhibiting adenosine production in hippocampus. Electron J Biotechnol 2020;48. https://doi.org/10.1016/j.ejbt.2020.09.002  相似文献   

9.
BackgroundProdigiosin has been demonstrated to be an important candidate in investigating anticancer drugs and in many other applications in recent years. However, industrial production of prodigiosin has not been achieved. In this study, we found a prodigiosin-producing strain, Serratia marcescens FZSF02, and its fermentation strategies were studied to achieve the maximum yield of prodigiosin.ResultsWhen the culture medium consisted of 16.97 g/L of peanut powder, 16.02 g/L of beef extract, and 11.29 mL/L of olive oil, prodigiosin reached a yield of 13.622 ± 236 mg/L after culturing at 26 °C for 72 h. Furthermore, when 10 mL/L olive oil was added to the fermentation broth at the 24th hour of fermentation, the maximum prodigiosin production of 15,420.9 mg/L was obtained, which was 9.3-fold higher than the initial level before medium optimization. More than 60% of the prodigiosin produced with this optimized fermentation strategy was in the form of pigment pellets. To the best of our knowledge, this is the first report on this phenomenon of pigment pellet formation, which made it much easier to extract prodigiosin at low cost. Prodigiosin was then purified and identified by absorption spectroscopy, HPLC, and LCMS. Purified prodigiosin obtained in this study showed anticancer activity in separate experiments on several human cell cultures: A549, K562, HL60, HepG2, and HCT116.ConclusionsThis is a promising strain for producing prodigiosin. The prodigiosin has potential in anticancer medicine studies.How to cite: Lin C, Jia X, Fang Y, et al. Enhanced production of prodigiosin by Serratia marcescens FZSF02 in the form of pigment pellets. Electron J Biotechnol 2019;40. https://doi.org/10.1016/j.ejbt.2019.04.007  相似文献   

10.
BackgroundLawsonia intracellularis remains a problem for the swine industry worldwide. Previously, we designed and obtained a vaccine candidate against this pathogen based on the chimeric proteins: OMP1c, OMP2c, and INVASc. These proteins formed inclusion bodies when expressed in E. coli, which induced humoral and cellular immune responses in vaccinated pigs. Also, protection was demonstrated after the challenge. In this study, we established a production process to increase the yields of the three antigens as a vaccine candidate.ResultsBatch and fed-batch fermentations were evaluated in different culture conditions using a 2 L bioreactor. A fed-batch culture with a modified Terrific broth medium containing glucose instead of glycerol, and induced with 0.75 mM IPTG at 8 h of culture (11 g/L of biomass) raised the volumetric yield to 627.1 mg/L. Under these culture conditions, plasmid-bearing cells increased by 10% at the induction time. High efficiency in cell disruption was obtained at passage six using a high-pressure homogenizer and a bead mill. The total antigen recovery was 64% (400 mg/L), with a purity degree of 70%. The antigens retained their immunogenicity in pigs, inducing high antibody titers.ConclusionsConsidering that the antigen production process allowed an increment of more than 70-fold, this methodology constitutes a crucial step in the production of this vaccine candidate against L. intracellularis.How to cite: Salazar S, Gutiérrez N, Sánchez O, et al. Establishment of a production process for a novel vaccine candidate against Lawsonia intracellularis. Electron J Biotechnol 2021.https://doi.org/10.1016/j.ejbt.2021.01.002  相似文献   

11.
12.
13.
BackgroundBiosurfactants are biomolecules that have the potential to be applied in food formulations due to their low toxicity and ability to improve sensory parameters. Considering the ability of yeasts to produce biosurfactants with food-friendly properties, the aim of the present study was to apply a biosurfactant produced by Candida utilis in the formulation of cookies.ResultsThe biosurfactant was obtained with a yield of 24.22 ± 0.23 g/L. The characterization analysis revealed that the structure of a metabolized fatty acid with high oleic acid content (68.63 ± 0.61%), and the thermogravimetric analysis demonstrated good stability at temperatures lower than 200°C, potential for food applications. The biosurfactant also exhibited satisfactory antioxidant activity at concentrations evaluated, without cytotoxic potential for cell strains, L929 and RAW 264.7, according to the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The incorporation of the surfactant into the dough of a standard cookie formulation to replace animal fat was carried out, achieving a softer, spongier product without significantly altering the physical and physicochemical properties or energy value.ConclusionThe thermal stability and antioxidant activity of the biosurfactant produced by C. utilis were verified, besides the positive contribution in the texture analysis of the cookies. Therefore, this biomolecule presents itself as a potential ingredient in flour-based sweet food formulations. How to cite: Ribeiro BG, de Veras BO, Aguiar JS, et al. Biosurfactant produced by Candida utilis UFPEDA1009 with potential application in cookie formulation. Electron J Biotechnol 2020;46. https://doi.org/10.1016/j.ejbt.2020.05.001.  相似文献   

14.
BackgroundEthanol concentration (PE), ethanol productivity (QP) and sugar consumption (SC) are important values in industrial ethanol production. In this study, initial sugar and nitrogen (urea) concentrations in sweet sorghum stem juice (SSJ) were optimized for high PE (≥ 10%, v/v), QP, (≥ 2.5 g/L·h) and SC (≥ 90%) by Saccharomyces cerevisiae SSJKKU01. Then, repeated-batch fermentations under normal gravity (NG) and high gravity (HG) conditions were studied.ResultsThe initial sugar at 208 g/L and urea at 2.75 g/L were the optimum values to meet the criteria. At the initial yeast cell concentration of ~ 1 × 108 cells/mL, the PE, QP and SC were 97.06 g/L, 3.24 g/L·h and 95.43%, respectively. Repeated-batch fermentations showed that the ethanol production efficiency of eight successive cycles with and without aeration were not significantly different when the initial sugar of cycles 2 to 8 was under NG conditions (~ 140 g/L). Positive effects of aeration were observed when the initial sugar from cycle 2 was under HG conditions (180–200 g/L). The PE and QP under no aeration were consecutively lower from cycle 1 to cycle 6. Additionally, aeration affected ergosterol formation in yeast cell membrane at high ethanol concentrations, whereas trehalose content under all conditions was not different.ConclusionInitial sugar, sufficient nitrogen and appropriated aeration are necessary for promoting yeast growth and ethanol fermentation. The SSJ was successfully used as an ethanol production medium for a high level of ethanol production. Aeration was not essential for repeated-batch fermentation under NG conditions, but it was beneficial under HG conditions.How to cite: Sriputorn B, Laopaiboon P, Phukoetphim N, et al. Enhancement of ethanol production efficiency in repeated-batch fermentation from sweet sorghum stem juice: Effect of initial sugar, nitrogen and aeration. Electron J Biotechnol 2020;46. https://doi.org/10.1016/j.ejbt.2020.06.001  相似文献   

15.
BackgroundCecropin P1, acting as an antimicrobial, has a broad-spectrum antibacterial activity with some antiviral and antifungal properties. It is a promising natural alternative to antibiotics which is originally isolated from the pig intestinal parasitic nematode Ascaris suum. Many studies have shown that Cecropin P1 is helpful for the prevention or treatment of clinical diseases. Therefore, it is very necessary to establish a safe, nontoxic, and efficient expression method of Cecropin P1.ResultsThe results indicated that the recombinant protein was about 5.5 kDa showed by Tricine–SDS–PAGE and Western blot. And Cecropin P1 was efficiently secreted and expressed after 12 h of induction, with an increasing yield over the course of the induction. Its maximum concentration was 7.83 mg/L after concentration and purification. In addition, in vitro experiments demonstrated that Cecropin P1 not only exerted a strong inhibitory effect on Escherichia coli, Salmonella sp., Shigella sp., and Pasteurella sp., but also displayed an antiviral activity against PRRSV NADC30-Like strain.ConclusionsCollectively, the strategy of expressing Cecropin P1 in Saccharomyces cerevisiae is harmless, efficient, and safe for cells. In addition, the expressed Cecropin P1 has antiviral and antibacterial properties concurrently.How to cite: Jiang R, Zhang P, Wu X, et al., Expression of antimicrobial peptide Cecropin P1 in Saccharomyces cerevisiae and its antibacterial and antiviral activity in vitro. Electron J Biotechnol 2021;50. https://doi.org/10.1016/j.ejbt.2020.12.006  相似文献   

16.
BackgroundManno-oligosaccharides (MOS) is known as a kind of prebiotics. Mannanase plays a key role for the degradation of mannan to produce MOS. In this study, the mannanases of glycoside hydrolase (GH) families 5 Man5HJ14 and GH26 ManAJB13 were employed to prepare MOS from locust bean gum (LBG) and palm kernel cake (PKC). The prebiotic activity and utilization of MOS were assessed in vitro using the probiotic Lactobacillus plantarum strain.ResultsGalactomannan from LBG was converted to MOS ranging in size from mannose up to mannoheptose by Man5HJ14 and ManAJB13. Mannoheptose was got from the hydrolysates produced by Man5HJ14, which mannohexaose was obtained from LBG hydrolyzed by ManAJB13. However, the same components of MOS ranging in size from mannose up to mannotetrose were observed between PKC hydrolyzed by the mannanases mentioned above. MOS stability was not affected by high-temperature and high-pressure condition at their natural pH. Based on in vitro growth study, all MOS from LBG and PKC was effective in promoting the growth of L. plantarum CICC 24202, with the strain preferring to use mannose to mannotriose, rather than above mannotetrose.ConclusionsThe effect of mannanases and mannan difference on MOS composition was studied. All of MOS hydrolysates showed the stability in adversity condition and prebiotic activity of L. plantarum, which would have potential application in the biotechnological applications.How to cite: Zhang R, Li X-Y, Cen X-L, et al. Enzymatic preparation of manno-oligosaccharides from locust bean gum and palm kernel cake, and investigations into its prebiotic activity. Electron J Biotechnol 2021;49. https://doi.org/10.1016/j.ejbt.2020.11.001  相似文献   

17.
BackgroundChia seeds are gaining increasing interest among food producers and consumers because of their prohealth properties.ResultsThe aim of this work was to evaluate the potential of chia seeds to act as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. The highest inhibitory activity against AChE and BChE was observed for colored seed ethanol extracts. A positive correlation was found between the presence of quercetin and isoquercetin as well as protocatechuic, hydroxybenzoic, and coumaric acids and the activity of extracts as AChE and BChE inhibitors. It has also been shown that grain fragmentation affects the increase in the activity of seeds against cholinesterases (ChE). Furthermore, seeds have been shown to be a source of substances that inhibit microbial growth.ConclusionsIt was found that the chia seed extracts are rich in polyphenols and inhibit the activity of ChEs; therefore, their use can be considered in further research in the field of treatment and prevention of neurodegenerative diseases.How to cite: Kobus-Cisowska J, Szymanowska D, Maciejewska P, et al. In vitro screening for acetylcholinesterase and butyrylcholinoesterase inhibition and antimicrobial activity of chia seeds (Salvia hispanica). Electron J Biotechnol 2019;37. https://doi.org/10.1016/j.ejbt.2018.10.002  相似文献   

18.
BackgroundLXYL-P1-2 is the first reported glycoside hydrolase that can catalyze the transformation of 7-β-xylosyl-10-deacetyltaxol (XDT) to 10-deacetyltaxol (DT) by removing the d-xylosyl group at the C-7 position. Successful synthesis of paclitaxel by one-pot method combining the LXYL-P1-2 and 10-deacetylbaccatin III-10-β-O-acetyltransferase (DBAT) using XDT as a precursor, making LXYL-P1-2 a highly promising enzyme for the industrial production of paclitaxel. The aim of this study was to investigate the catalytic potential of LXYL-P1-2 stabilized on magnetic nanoparticles, the surface of which was modified by Ni2+-immobilized cross-linked Fe3O4@Histidine.ResultsThe diameter of matrix was 20–40 nm. The Km value of the immobilized LXYL-P1-2 catalyzing XDT (0.145 mM) was lower than that of the free enzyme (0.452 mM), and the kcat/Km value of immobilized enzyme (12.952 mM s−1) was higher than the free form (8.622 mM s−1). The immobilized form maintained 50% of its original activity after 15 cycles of reuse. In addition, the stability of immobilized LXYL-P1-2, maintained 84.67% of its initial activity, improved in comparison with free form after 30 d storage at 4°C.ConclusionsThis investigation not only provides an effective procedure for biocatalytic production of DT, but also gives an insight into the application of magnetic material immobilization technology.How to citeZou S, Chen TJ, Li DY, et al. LXYL-P1-2 immobilized on magnetic nanoparticles and its potential application in paclitaxel production. Electron J Biotechnol 2021;50.https://doi.org/10.1016/j.ejbt.2020.12.005  相似文献   

19.
20.
BackgroundPyruvic acid (PA), a vital α-oxocarboxylic acid, plays an important role in energy and carbon metabolism. The oleaginous yeast Yarrowia lipolytica (Y. lipolytica) has considerable potential for the production of PA. An increased NaCl concentration reportedly increases the biomass and PA yield of Y. lipolytica.ResultsTo increase the yield of PA, the NaCl-tolerant Y. lipolytica A4 mutant was produced using the atmospheric and room temperature plasma method of mutation. The A4 mutant showed growth on medium containing 160 g/L NaCl. The PA yield of the A4 mutant reached 97.2 g/L at 120 h (0.795 g/g glycerol) in a 20-L fermenter with glycerol as the sole carbon source, which was 28.9% higher than that of the parental strain.ConclusionThe PA yield from Y. lipolytica can be improved by increasing its NaCl tolerance.How to cite: Yuan W, Lin X, Zhong S, et al. Enhanced pyruvic acid yield in an osmotic stress-resistant mutant of Yarrowia lipolytica. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号