首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
BackgroundThe amount of municipal solid waste (MSW) gradually increased along with the rapid development of modern cities. A large amount of landfill leachate are generated with excessive chemical oxygen demand (COD), which create a great deal of pressure on the environment-friendly treatment process. Anaerobic digestion is an ideal technique to solve the above problem.ResultsA thermophilic granular sludge was successfully adapted for anaerobic digestion of MSW leachate (from an aging large-scale landfill) for methane production. The COD degradation efficiency improved by 81.8%, while the methane production rate reached 117.3 mL CH4/(g VS d), which was 2.34-fold more than the control condition. The bacterial and archaeal communities involved in the process were revealed by 16S rRNA gene high-throughput pyrosequencing. The richness of the bacterial community decreased in the process of thermophilic granular sludge, while the archaeal community structure presented a reverse phenomenon. The bacterial genus, Methanosaeta was the most abundant during the mesophilic process, while Methanobacterium, Methanoculleus, Methanosaeta and Methanosarcina were more evenly distributed. The more balanced community distribution between hydrogenotrophic and acetotrophic methanogens implied a closer interaction between the microbes, which further contributed to higher methane productivity. The detailed relationship between the key functional communities and anaerobic digestion performances were demonstrated via the multivariate canonical correspondence analysis.ConclusionsWith the assistance of adaptive thermophilic granular sludge, microbial community structure was more evenly distributed, while both of COD degradation rate and methane production was improved during anaerobic digestion of MSW landfill leachate.How to cite: Feng S, Hou S, Huang X, et al. Insights into the microbial community structure of anaerobic digestion of municipal solid waste landfill leachate for methane production by adaptive thermophilic granular sludge. Electron J Biotechnol 2019;39. https://doi.org/10.1016/j.ejbt.2019.04.001.  相似文献   

2.
BackgroundTriclosan (TCS) is an antimicrobial agent widely used in health care and consumer products. This compound is present in sludge of wastewater treatment plants (WWTPs), and because of its bactericidal characteristics, it can inhibit the methanogenic activity in anaerobic digestion (AD) technology. The aim of this study was to evaluate the toxic effects of TCS on the methanogenic activity.ResultsBatch anaerobic reactors were used with TCS concentrations of 7.8, 15.7, 23.5, and 31.4 mg/L. These assays consisted in three successive feedings (I, II, and III), wherein the sludge was exposed to each TCS concentration and volatile fatty acid (VFA) substrate. For evaluation of the residual sludge activity during feeding III, only VFA was used. The results showed that the increase in TCS concentrations correlated with the reduction in methane (CH4) production. In this case, the minimum values were achieved for TCS concentration of 31.4 mg/L with CH4 levels between 101.9 and 245.3 during feedings I, II, and III. Regarding the effect of TCS on VFA consumption, an inhibitory effect was detected for TCS concentrations of 23.5 and 31.4 mg/L, with concentrations of acetic, butyric, and propionic acids at the end of the assay (37 d) between 153.6 and 206.8, 62.5 and 60.1, and 93.4 and 110 mg/L, respectively. Regarding the removal of TCS during AD, these values were above 47%.ConclusionTCS is an inhibitor of methanogenic activity with a decrease between 63 and 70% during the different feedings. The CH4 production was not recovered during feeding III, with inhibition percentages of 21–72%.How to cite: Reyes-Contreras C, Leiva AM, Vidal G. Evaluation of triclosan toxic effects on the methanogenic activity. Electron J Biotechnol 2019;39. https://doi.org/10.1016/j.ejbt.2019.03.006.  相似文献   

3.
BackgroundThe determination of kinetic parameters and the development of mathematical models are of great interest to predict the growth of microalgae, the consumption of substrate and the design of photobioreactors focused on CO2 capture. However, most of the models in the literature have been developed for CO2 concentrations below 10%.ResultsA nonaxenic microalgal consortium was isolated from landfill leachate in order to study its kinetic behavior using a dynamic model. The model considered the CO2 mass transfer from the gas phase to the liquid phase and the effect of light intensity, assimilated nitrogen concentration, ammonium concentration and nitrate concentration. The proposed mathematical model was adjusted with 13 kinetic parameters and validated with a good fit obtained between experimental and simulated data.ConclusionsGood results were obtained, demonstrating the robustness of the proposed model. The assumption in the model of DIC inhibition in the ammonium and nitrate uptakes was correct, so this aspect should be considered when evaluating the kinetics with microalgae with high inlet CO2 concentrations.How to cite: Saldarriaga L F, Almenglo F, Ramírez M, et al. Kinetic characterization and modeling of a microalgae consortium isolated from landfill leachate under a high CO2 concentration in a bubble column photobioreactor. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.006.  相似文献   

4.
BackgroundChia seeds are gaining increasing interest among food producers and consumers because of their prohealth properties.ResultsThe aim of this work was to evaluate the potential of chia seeds to act as acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitors. The highest inhibitory activity against AChE and BChE was observed for colored seed ethanol extracts. A positive correlation was found between the presence of quercetin and isoquercetin as well as protocatechuic, hydroxybenzoic, and coumaric acids and the activity of extracts as AChE and BChE inhibitors. It has also been shown that grain fragmentation affects the increase in the activity of seeds against cholinesterases (ChE). Furthermore, seeds have been shown to be a source of substances that inhibit microbial growth.ConclusionsIt was found that the chia seed extracts are rich in polyphenols and inhibit the activity of ChEs; therefore, their use can be considered in further research in the field of treatment and prevention of neurodegenerative diseases.How to cite: Kobus-Cisowska J, Szymanowska D, Maciejewska P, et al. In vitro screening for acetylcholinesterase and butyrylcholinoesterase inhibition and antimicrobial activity of chia seeds (Salvia hispanica). Electron J Biotechnol 2019;37. https://doi.org/10.1016/j.ejbt.2018.10.002  相似文献   

5.
BackgroundFermentation strategies for bioethanol production that use flocculating Saccharomyces cerevisiae yeast need to account for the mechanism by which inhibitory compounds, generated in the hydrolysis of lignocellulosic materials, are tolerated and detoxified by a yeast floc.ResultsDiffusion coefficients and first-order kinetic bioconversion rate coefficients were measured for three fermentation inhibitory compounds (furfural, hydroxymethylfurfural, and vanillin) in self-aggregated flocs of S. cerevisiae NRRL Y-265. Thièle-type moduli and internal effectiveness factors were obtained by simulating a simple steady-state spherical floc model.ConclusionsThe obtained values for the Thiéle moduli and internal effectiveness factors showed that the bioconversion rate of the inhibitory compounds is the dominant phenomenon over mass transfer inside the flocs.How to cite: Landaeta R, Acevedo F, Aroca G. Effective diffusion coefficients and bioconversion rates of inhibitory compounds in flocs of Saccharomyces cerevisiae. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.rjbt.2019.08.001  相似文献   

6.
BackgroundThe potential waste canola oil-degrading ability of the cold-adapted Antarctic bacterial strain Rhodococcus sp. AQ5-07 was evaluated. Globally, increasing waste from food industries generates serious anthropogenic environmental risks that can threaten terrestrial and aquatic organisms and communities. The removal of oils such as canola oil from the environment and wastewater using biological approaches is desirable as the thermal process of oil degradation is expensive and ineffective.ResultsRhodococcus sp. AQ5-07 was found to have high canola oil-degrading ability. Physico-cultural conditions influencing its activity were studied using one-factor-at-a-time (OFAT) and statistical optimisation approaches. Considerable degradation (78.60%) of 3% oil was achieved by this bacterium when incubated with 1.0 g/L ammonium sulphate, 0.3 g/L yeast extract, pH 7.5 and 10% inoculum at 10°C over a 72-h incubation period. Optimisation of the medium conditions using response surface methodology (RSM) resulted in a 9.01% increase in oil degradation (87.61%) when supplemented with 3.5% canola oil, 1.05 g/L ammonium sulphate, 0.28g/L yeast extract, pH 7.5 and 10% inoculum at 12.5°C over the same incubation period. The bacterium was able to tolerate an oil concentration of up to 4.0%, after which decreased bacterial growth and oil degradation were observed.ConclusionsThese features make this strain worthy of examination for practical bioremediation of lipid-rich contaminated sites. This is the first report of any waste catering oil degradation by bacteria originating from Antarctica.How to cite: Ibrahim S, Zahri KNM, Convey P, et al. Optimisation of biodegradation conditions for waste canola oil by cold-adapted Rhodococcus sp. AQ5-07 from Antarctica. Electron J Biotechnol 2020;48. https://doi.org/10.1016/j.ejbt.2020.07.005  相似文献   

7.
BackgroundThis paper presents micro- and nano-fabrication techniques for leachable realgar using the extremophilic bacterium Acidithiobacillus ferrooxidans (A. ferrooxidans) DLC-5.ResultsRealgar nanoparticles of size ranging from 120 nm to 200 nm were successfully prepared using the high-energy ball mill instrument. A. ferrooxidans DLC-5 was then used to bioleach the particles. The arsenic concentration in the bioleaching system was found to be increased significantly when compared with that in the sterile control. Furthermore, in the comparison with the bioleaching of raw realgar, nanoparticles could achieve the same effect with only one fifth of the consumption.ConclusionEmphasis was placed on improving the dissolvability of arsenic because of the great potential of leachable realgar drug delivery in both laboratory and industrial settings.How to cite: Xu R, Song P, Wang J, et al. Bioleaching of realgar nanoparticles using the extremophilic bacterium Acidithiobacillus ferrooxidans DLC. Electron J Biotechnol 2019;38. https://doi.org/10.1016/j.ejbt.2019.01.001.  相似文献   

8.
BackgroundRosemary (Rosmarinus officinalis) contains active substances that have desirable properties for industrial and herbal medicine applications, e.g., essential oils (1.5–2.5%), tannins, flavonoids, triterpenes, saponins, resins, phytosterols, rosmarinic acid and many others. The aim of this study was to determine the influence of rosemary extract and 20% rapeseed oil substitution for animal fat on storage changes and inhibition of cholinesterases in liver pâté.ResultsPreliminary research showed that rosemary extract exhibited antioxidative activity in the system of accelerated Rancimat and Oxidograph tests. Then, rosemary extract was used as an ingredient in liver pâté. During the experiment, meat samples were refrigerated and tested on days 1, 5, 8, 12 and 15 after production. The study proved that the substitution of 20% of animal fat with rapeseed oil decreased the content of saturated acids and increased the content of monoenic fatty acids by approximately 5% and polyene fatty acids by 40%.ConclusionsIn addition to antioxidative activity, the rosemary extract affected the health-promoting value of the samples, which inhibited cholinesterase activity during the entire storage period. The extract inhibited AChE more than BChE.How to cite: Bilska A, Kobus-Cisowska J, Kmiecik D, et al. Cholinesterase inhibitory activity, antioxidative potential and microbial stability of innovative liver pâté fortified with rosemary extract (Rosmarinus officinalis). Electron J Biotechnol 2019;40. https://doi.org/10.1016/j.ejbt.2019.03.007  相似文献   

9.
BackgroundThe harmful effects of type 2 diabetes mellitus and its complications have become a major global public health problem. In this study, the effects of Momordica charantia saponins (MCS) on lipid metabolism, oxidative stress, and insulin signaling pathway in type 2 diabetic rats were investigated.ResultsMCS could attenuate the tendency of weight loss of the model rats. It could also improve glucose tolerance; reduce fasting blood glucose, nonesterified fatty acid, triglyceride, and total cholesterol; and increase the insulin content and insulin sensitivity index of the rats. The activity of superoxide dismutase and catalase increased, and the content of malondialdehyde decreased in the liver and pancreas tissues of rats in MCS-treated groups significantly. In addition, the expression of p-IRS-1 (Y612) and p-Akt (S473) increased, and the expression of p-IRS-1 (S307) decreased in the liver tissues and pancreas tissues of rats in MCS-treated groups significantly.ConclusionMCS has an antidiabetic effect, which may be related to its improving the lipid metabolism disorder, reducing oxidative stress level, and regulating the insulin signaling pathway.How to cite: Jiang S, Xu L, Xu X, et al. Anti-diabetic effect of Momordica charantia saponins in rats induced by high-fat diet combined with STZ. Electron J Biotechnol 2020;43. https://doi.org/10.1016/j.ejbt.2019.12.001.  相似文献   

10.
BackgroundPyruvic acid (PA), a vital α-oxocarboxylic acid, plays an important role in energy and carbon metabolism. The oleaginous yeast Yarrowia lipolytica (Y. lipolytica) has considerable potential for the production of PA. An increased NaCl concentration reportedly increases the biomass and PA yield of Y. lipolytica.ResultsTo increase the yield of PA, the NaCl-tolerant Y. lipolytica A4 mutant was produced using the atmospheric and room temperature plasma method of mutation. The A4 mutant showed growth on medium containing 160 g/L NaCl. The PA yield of the A4 mutant reached 97.2 g/L at 120 h (0.795 g/g glycerol) in a 20-L fermenter with glycerol as the sole carbon source, which was 28.9% higher than that of the parental strain.ConclusionThe PA yield from Y. lipolytica can be improved by increasing its NaCl tolerance.How to cite: Yuan W, Lin X, Zhong S, et al. Enhanced pyruvic acid yield in an osmotic stress-resistant mutant of Yarrowia lipolytica. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.002.  相似文献   

11.
BackgroundThe study of plant-associated microorganisms is very important in the discovery and development of bioactive compounds. Pseudomonas is a diverse genus of Gammaproteobacteria comprising more than 60 species capable of establishing themselves in many habitats, which include leaves and stems of many plants. There are reports of metabolites with diverse biological activity obtained from bacteria of this genus, and some of the metabolites have shown cytotoxic activity against cancer cell lines.Because of the high incidence of cancer, research in recent years has focused on obtaining new sources of active compounds that exhibit interesting pharmacodynamic and pharmacokinetic properties that lead to the development of new therapeutic agents.ResultsA bacterial strain was isolated from tumors located in the stem of Pinus patula, and it was identified as Pseudomonas cedrina. Extracts from biomass and broth of P. cedrina were obtained with chloroform:methanol (1:1). Only biomass extracts exhibited antiproliferative activity against human tumor cell lines of cervix (HeLa), lung (A-549), and breast (HBL-100). In addition, a biomass extract from P. cedrina was fractioned by silica gel column chromatography and two diketopiperazines were isolated: cyclo-(l-Prolyl-l-Valine) and cyclo-(l-Leucyl-l-Proline).ConclusionsThis is the first report on the association of P. cedrina with the stems of P. patula in Mexico and the antiproliferative activity of extracts from this species of bacteria against human solid tumor cell lines.How to cite: Sánchez-Tafolla L, Padrón JM, Mendoza G, et al. Antiproliferative activity of biomass extract from Pseudomonas cedrina. Electron J Biotechnol 2019;40. https://doi.org/10.1016/j.ejbt.2019.03.010.  相似文献   

12.
BackgroundThe main objective of this study was to isolate fungi associated with Anthopleura xanthogrammica and measure their antimicrobial and enzymatic activities. A total of 93 fungal strains associated with A. xanthogrammica were isolated in this study, of which 32 isolates were identified using both morphological characteristics and internal transcribed spacer (ITS) sequence analysis. The antibacterial activities of 32 fungal isolates were tested against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Edwardsiella tarda, Vibrio harveyi, Fusarium oxysporum, and Pyricularia oryzae by agar diffusion assay. Extracellular hydrolytic enzyme activities of the fungal isolates were determined by agar diffusion assays. Enzyme activities were detected from clear halo size.ResultsThe isolated fungi belonged to 18 genera within 7 taxonomic orders of 1 phylum. The genera Aspergillaceae were the most diverse and common. The antimicrobial activities of 32 isolates were evaluated, and 19 (59.4%) of fungi isolate displayed unique antimicrobial activities. All fungal strains displayed at least one enzyme activity. The most common enzyme activities in the fungi isolates were amylase and protease, while the least common were pectinase and xylanase.ConclusionsThis is first report on the sea anemone-derived fungi with antimicrobial and enzyme activities. Results indicated that sea anemone is a hot spot of fungal diversity and a rich resource of bioactive natural products.How to cite: Liu S, Ahmed S, Zhang C, et al. Diversity and antimicrobial activity of culturable fungi associated with sea anemone Anthopleura xanthogrammica. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.003  相似文献   

13.
14.
BackgroundCecropin P1, acting as an antimicrobial, has a broad-spectrum antibacterial activity with some antiviral and antifungal properties. It is a promising natural alternative to antibiotics which is originally isolated from the pig intestinal parasitic nematode Ascaris suum. Many studies have shown that Cecropin P1 is helpful for the prevention or treatment of clinical diseases. Therefore, it is very necessary to establish a safe, nontoxic, and efficient expression method of Cecropin P1.ResultsThe results indicated that the recombinant protein was about 5.5 kDa showed by Tricine–SDS–PAGE and Western blot. And Cecropin P1 was efficiently secreted and expressed after 12 h of induction, with an increasing yield over the course of the induction. Its maximum concentration was 7.83 mg/L after concentration and purification. In addition, in vitro experiments demonstrated that Cecropin P1 not only exerted a strong inhibitory effect on Escherichia coli, Salmonella sp., Shigella sp., and Pasteurella sp., but also displayed an antiviral activity against PRRSV NADC30-Like strain.ConclusionsCollectively, the strategy of expressing Cecropin P1 in Saccharomyces cerevisiae is harmless, efficient, and safe for cells. In addition, the expressed Cecropin P1 has antiviral and antibacterial properties concurrently.How to cite: Jiang R, Zhang P, Wu X, et al., Expression of antimicrobial peptide Cecropin P1 in Saccharomyces cerevisiae and its antibacterial and antiviral activity in vitro. Electron J Biotechnol 2021;50. https://doi.org/10.1016/j.ejbt.2020.12.006  相似文献   

15.
BackgroundBioremoval of phenolic compounds using fungi and bacteria has been studied extensively; nevertheless, trinitrophenol bioremediation using modified Oscillatoria cyanobacteria has been barely studied in the literature.ResultsAmong the effective parameters of bioremediation, algal concentration (3.18 g·L−1), trinitrophenol concentration (1301 mg·L−1), and reaction time (3.75 d) were screened by statistical analysis. Oscillatoria cyanobacteria were modified by starch/nZVI and starch/graphene oxide in a bubble column bioreactor, and their bioremoval efficiency was investigated. Modifiers, namely, starch/zero-valent iron and starch/GO, increased trinitrophenol bioremoval efficiency by more than 10% and 12%, respectively, as compared to the use of Oscillatoria cyanobacteria alone.ConclusionsIt was found that starch/nano zero-valent iron and starch/GO could be applied to improve the removal rate of phenolic compounds from the aqueous solution.How to cite: Bavandi R, Emtyazjoo M, Saravi HN, et al. Study of nano-structure zero-valent iron and graphene-oxid capability onbioremoval of trinitrophenol from wastewater in a bubble column bioreactor. Electron J Biotechnol 2019;39. https://doi.org/10.1016/j.ejbt.2019.02.003.  相似文献   

16.
BackgroundProtein glutaminase specifically deamidates glutamine residue in protein and therefore significantly improves protein solubility and colloidal stability of protein solution. In order to improve its preparation efficiency, we exploited the possibility for its secretory expression mediated by twin-arginine translocation (Tat) pathway in Bacillus licheniformis.ResultsThe B. licheniformis genome-wide twin-arginine signal peptides were analyzed. Of which, eleven candidates were cloned for construction of expression vectors to mediate the expression of Chryseobacterium proteolyticum protein glutaminase (PGA). The signal peptide of GlmU was confirmed that it significantly mediated PGA secretion into media with the maximum activity of 0.16 U/ml in Bacillus subtilis WB600. A mutant GlmU-R, being replaced the third residue aspartic acid of GlmU twin-arginine signal peptide with arginine by site-directed mutagenesis, mediated the improved secretion of PGA with about 40% increased (0.23 U/ml). In B. licheniformis CBBD302, GlmU-R mediated PGA expression in active form with the maximum yield of 6.8 U/ml in a 25-l bioreactor.ConclusionsPGA can be produced and secreted efficiently in active form via Tat pathway of B. licheniformis, an alternative expression system for the industrial-scale production of PGA.How to cite: Niu D, Li C, Wang P, et al. Twin-arginine signal peptide of Bacillus licheniformis GlmU efficiently mediated secretory expression of protein glutaminase. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.ejbt.2019.10.006  相似文献   

17.
BackgroundManno-oligosaccharides (MOS) is known as a kind of prebiotics. Mannanase plays a key role for the degradation of mannan to produce MOS. In this study, the mannanases of glycoside hydrolase (GH) families 5 Man5HJ14 and GH26 ManAJB13 were employed to prepare MOS from locust bean gum (LBG) and palm kernel cake (PKC). The prebiotic activity and utilization of MOS were assessed in vitro using the probiotic Lactobacillus plantarum strain.ResultsGalactomannan from LBG was converted to MOS ranging in size from mannose up to mannoheptose by Man5HJ14 and ManAJB13. Mannoheptose was got from the hydrolysates produced by Man5HJ14, which mannohexaose was obtained from LBG hydrolyzed by ManAJB13. However, the same components of MOS ranging in size from mannose up to mannotetrose were observed between PKC hydrolyzed by the mannanases mentioned above. MOS stability was not affected by high-temperature and high-pressure condition at their natural pH. Based on in vitro growth study, all MOS from LBG and PKC was effective in promoting the growth of L. plantarum CICC 24202, with the strain preferring to use mannose to mannotriose, rather than above mannotetrose.ConclusionsThe effect of mannanases and mannan difference on MOS composition was studied. All of MOS hydrolysates showed the stability in adversity condition and prebiotic activity of L. plantarum, which would have potential application in the biotechnological applications.How to cite: Zhang R, Li X-Y, Cen X-L, et al. Enzymatic preparation of manno-oligosaccharides from locust bean gum and palm kernel cake, and investigations into its prebiotic activity. Electron J Biotechnol 2021;49. https://doi.org/10.1016/j.ejbt.2020.11.001  相似文献   

18.
BackgroundVibrio species display variable and plastic fitness strategies to survive and interact with multiple hosts, including marine aquaculture species that are severely affected by pathogenic Vibrios. The culturable Vibrio sp. strain ArtGut-C1, the focus of this study, provides new evidence of such phenotypic plasticity as it accumulates polyhydroxybutyrate (PHB), a biodegradable polymer with anti-pathogen activity, particularly in the marine larviculture phase. The strain was isolated from the gut of laboratory-reared Artemia individuals, the live diet and PHB carrier used in larviculture. Its main phenotypic properties, taxonomic status and genomic properties are reported based on the whole-genome sequencing.ResultsVibrio sp. ArtGut-C1 yielded 72.6% PHB of cells’ dry weight at 25°C. The genomic average nucleotide identity (ANI) shows it is closely related to V. diabolicus (ANI: 88.6%). Its genome contains 5,236,997-bp with 44.8% GC content, 3,710 protein-coding sequences, 96 RNA, 9 PHB genes functionally related to PHB metabolic pathways, and several genes linked to competing and colonizing abilities.ConclusionsThis culturable PHB-accumulating Vibrio strain shows high genomic and phenotypic variability. It may be used as a natural pathogen biocontrol in the marine hatchery and as a potential cell factory for PHB production.How to cite: Yévenes M, Quiroz M, Maruyama F, et al. Vibrio sp. ArtGut-C1, a polyhydroxybutyrate producer isolated from the gut of the aquaculture live diet Artemia (Crustacea). Electron J Biotechnol 2021;49. https://doi.org/10.1016/j.ejbt.2020.10.003  相似文献   

19.
BackgroundBiologically active peptides produced from fish wastes are gaining attention because their health benefits. Proteases produced by halophilic microorganisms are considered as a source of active enzymes in high salt systems like fish residues. Hence, the aim of this study was the bioprospection of halophilic microorganisms for the production of proteases to prove their application for peptide production.ResultsHalophilic microorganisms were isolated from saline soils of Mexico and Bolivia. An enzymatic screening was carried out for the detection of lipases, esterases, pHB depolymerases, chitinases, and proteases. Most of the strains were able to produce lipases, esterases, and proteases, and larger hydrolysis halos were detected for protease activity. Halobacillus andaensis was selected to be studied for proteolytic activity production; the microorganism was able to grow on gelatin, yeast extract, skim milk, casein, peptone, fish muscle (Cyprinus carpio), and soy flour as protein sources, and among these sources, fish muscle protein was the best inducer of proteolytic activity, achieving a protease production of 571 U/mL. The extracellular protease was active at 50°C, pH 8, and 1.4 M NaCl and was inhibited by phenylmethylsulfonyl fluoride. The proteolytic activity of H. andaensis was used to hydrolyze fish muscle protein for peptide production. The peptides obtained showed a MW of 5.3 kDa and a radical scavenging ability of 10 to 30% on 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and a ferric reducing ability of plasma.ConclusionThe use of noncommercial extracellular protease produced by H. andaensis for biologically active peptide production using fish muscle as the protein source presents a great opportunity for high-value peptide production.How to cite: Delgado-García M, Flores-Gallegos AC, Kirchmayr M, et al. Bioprospection of proteases from Halobacillus andaensis for bioactive peptide production from fish muscle protein. Electron J Biotechnol 2019;39. https://doi.org/10.1016/j.ejbt.2019.03.001.  相似文献   

20.
BackgroundAcidithiobacillus ferrooxidans is a facultative anaerobe that depends on ferrous ion oxidation as well as reduced sulfur oxidation to obtain energy and is widely applied in metallurgy, environmental protection, and soil remediation. With the accumulation of experimental data, metabolic mechanisms, kinetic models, and several databases have been established. However, scattered data are not conducive to understanding A. ferrooxidans that necessitates updated information informed by systems biology.ResultsHere, we constructed a knowledgebase of iron metabolism of A. ferrooxidans (KIMAf) system by integrating public databases and reviewing the literature, including the database of bioleaching substrates (DBS), the database of bioleaching metallic ion-related proteins (MIRP), the A. ferrooxidans bioinformation database (Af-info), and the database for dynamics model of bioleaching (DDMB). The DBS and MIRP incorporate common bioleaching substrates and metal ion-related proteins. Af-info and DDMB integrate nucleotide, gene, protein, and kinetic model information. Statistical analysis was performed to elucidate the distribution of isolated A. ferrooxidans strains, evolutionary and metabolic advances, and the development of bioleaching models.ConclusionsThis comprehensive system provides researchers with a platform of available iron metabolism-related resources of A. ferrooxidans and facilitates its application.How to citeZhou Z, Ma W, Liu Y, et al. Potential application of a knowledgebase of iron metabolism of Acidithiobacillus ferrooxidans as an alternative platform. Electron J Biotechnol 2021;51; https://doi.org/10.1016/j.ejbt.2021.04.003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号