首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the expected static group synchronization problem of the second-order multi-agent systems via pinning control. For directed communication topology with spanning tree, based on Gershgorin disk theorem and the matrix property, a static pinning control protocol with fixed gains is first introduced and some sufficient and necessary static group synchronization criteria are also established. It is worth mentioning that a rigorous proof is also given that only one pinning node is needed to guarantee static group synchronization, which could be inferred that our protocol might be more economical and effective in large scale of multi-agent systems. Then, for weakly connected directed communication topology with nodes of zero in-degree, an adaptive pinning control applied to the node with zero in-degree is also proposed to achieve static group synchronization. Finally, the efficiency of the proposed protocols is verified by two simulation examples.  相似文献   

2.
In this paper, we mainly tend to consider distributed leader-following fixed-time quantized consensus problem of nonlinear multi-agent systems via impulsive control. An appropriate quantized criterion and some novel control protocols are proposed in order to solve the problem. The protocols proposed integrates the two control strategies from the point of view of reducing communication costs and constraints, which are quantized control and impulsive control. The fixed-time quantized consensus of multi-agent is analyzed in terms of algebraic graph theory, Lyapunov theory and comparison system theory, average impulsive interval. The results show that if some sufficient conditions are met, the fixed-time consensus of multi-agent systems can be guaranteed under impulsive control with quantized relative state measurements. In addition, compared with finite-time consensus, the settling-time of fixed-time quantized consensus does not depend on the initial conditions of each agent but on the parameters of the protocol. Finally, numerical simulations are exploited to illustrate the effectiveness and performance to support our theoretical analysis.  相似文献   

3.
This paper investigates the passivity and synchronization problems for two classes of multiple weighted coupled neural networks (MWCNNs) with or without time delays. Firstly, by utilizing an impulsive control strategy and some inequality techniques, several passivity criteria for MWCNNs with diverse dimensions of output and input are established. Then, based on the Lyapunov functional, some sufficient conditions to ensure the synchronization of MWCNNs via impulsive control are derived. In addition, combined with the comparison principle and the impulsive delay differential inequality, the global exponential synchronization of MWCNNs with time-varying delays is considered under impulsive control. Finally, two numerical examples illustrate the effectiveness of the obtained results.  相似文献   

4.
In this paper, we address the problem of output containment control of general linear multi-agent systems (MASs). The MAS under consideration is comprised by multiple followers and multiple leaders, all with heterogeneous dynamics. In particular, the leaders’ dynamics are subject to heterogeneous non-zero (possibly persistent) but bounded inputs, which are not measurable for any follower agent, making the associated distributed control design problem rather challenging. A new distributed observer-based containment control protocol is proposed to overcome associated challenges. It consists of two hierarchical layers including (i) the first layer of adaptive finite-time cooperative observer responsible for estimating the convex-hull signals formed by multiple leaders’ states through inter-agent collaboration; and (ii) the second layer of distributed state-feedback controller responsible for local tracking control through a modified output regulation technique. Important novelties of the proposed protocol are that (i) it deals with MASs with not only heterogeneous followers but also heterogeneous leaders; (ii) exact output containment control performance can be achieved in the presence of unmeasurable leaders’ inputs and unknown connectivity of communication network; and (iii) associated solvability conditions are formulated as linear matrix inequalities plus linear algebraic equations, which can be tested and solved effectively via efficient semi-definite programming. The developed theoretical results are demonstrated both rigorously using Lyapunov methods and through numerical simulations.  相似文献   

5.
A robust multi-tracking problem is solved for heterogeneous multi-agent systems with uncertain nonlinearities and disturbances. The nonlinear function satisfies a Lipschitz condition with a time-varying gain, the integral of which is bounded by a linear function. A distributed impulsive protocol is proposed, where the position data and velocity data of desired trajectories are needed only at sampling instants. Based on the system decomposition technique, the error dynamic system of achieving multi-tracking is decomposed into two impulsive dynamic systems with vanishing perturbation and nonvanishing perturbation, respectively. Constructing a nominal model, then the multi-tracking problem is converted into the stability of impulsive dynamic system with nonvanishing perturbation under some conditions. It is proved that the proposed impulsive protocol is robust enough to solve the multi-tracking problem. Numerical examples are presented to illustrate the effectiveness of our theoretical results.  相似文献   

6.
This paper addresses the distributed adaptive output-feedback tracking control problem of uncertain multi-agent systems in non-affine pure-feedback form under a directed communication topology. Since the control input is implicit for each non-affine agent, we introduce an auxiliary first-order dynamics to circumvent the difficulty in control protocol design and avoid the algebraic loop problem in control inputs and the unknown control gain problem. A decentralized input-driven observer is applied to reconstruct state information of each agent, which makes the design and synthesis extremely simplified. Based on the dynamic surface control technique and neural network approximators, a distributed output-feedback control protocol with prescribed tracking performance is derived. Compared with the existing results, the restrictive assumptions on the partial derivative of non-affine functions are removed. Moreover, it is proved that the output tracking errors always stay in a prescribed performance bound. The simulation results are provided to demonstrate the effectiveness of the proposed method.  相似文献   

7.
This paper investigates a finite-time consensus issue for non-affine pure-feedback multi-agent systems with dead-zone input. Compared with the existing results on multi-agent systems, finite-time consensus problem of non-affine multi-agent systems is proposed for the first time. Based on the backsteppting technique, adaptive finite-time consensus control scheme is presented. With the help of this strategy, adaptive virtual variables, adaptive laws and the actual controller are designed to guarantee that the consensus errors converge to a small scale of the origin in finite time. Finally, a practical example is applied to verify the feasibility of the proposed method.  相似文献   

8.
This paper considers the distributed adaptive fault-tolerant control problem for linear multi-agent systems with matched unknown nonlinear functions and actuator bias faults. By using fuzzy logic systems to approximate the unknown nonlinear function and constructing a local observer to estimate the states, an effective distributed adaptive fault-tolerant controller is developed. Furthermore, different from the traditional method to estimate the weight matrix, only the weight vector needs to be estimated by exchanging the order of weight vectors and fuzzy basis functions in the fuzzy logic systems. In contrast to the existing results, the assumption that the dimensions of input vector and output vector are equal is removed. In addition, it is proved that the proposed control protocol guarantees all signals in the closed-loop systems are bounded and all agents converge to the leader with bounded residual errors. Finally, simulation examples are given to illustrate the effectiveness of the proposed method.  相似文献   

9.
It is well known that control of Markovian systems is a difficult problem. This paper considers synchronization control of Markovian coupled nonlinear systems with random delays. A new control scheme is proposed. Sufficient conditions in terms of linear matrix inequalities (LMIs) are obtained such that the coupled system can be asymptotically synchronized onto an isolated system. The synchronization criteria include classical mode-dependent and mode-independent results as special cases. The design method of the control gains is also given. Compared with mode-dependent and mode-independent control methods, our results are more practical and have lower conservatism, respectively. Numerical simulations are given to verify the effectiveness of the theoretical results.  相似文献   

10.
This article investigates the rendezvous problem of heterogeneous multi-agent systems against Denial-of-Service attacks with preserving initial connectivity under a dynamic communication topology. The algorithm of resisting Denial-of-Service attack is first introduced to connectivity-preserving rendezvous problem of heterogeneous multi-agent systems. First of all, in order to observe the information of the leader, the distributed observers are designed to estimate the state of the leader with the communication network in the presence of Denial-of-Service attack by adaptive algorithm. Then, a switching system model is constructed by taking into account the influence of Denial-of-Service attacks. By means of the obtained model combined with a artificial potential function technique, the proposed distributed control algorithm allows all agents to accomplish rendezvous assignment with connectivity preservation as well as resisting Denial-of-Service attacks. Finally, detailed simulation validates the effectiveness of the proposed distributed observer and controller algorithm.  相似文献   

11.
This paper addresses the problem of cluster lag consensus for first-order multi-agent systems which can be formulated as moving agents in a capacity-limited network. A distributed control protocol is developed based on local information, and the robustness of the protocol is analyzed by using tools of Frobenius norm, Lyapunov functional and matrix theory. It is shown that when the root agents of the clusters are influenced by the active leader and the intra-coupling among agents is stronger enough, the multi-agent system will reach cluster lag consensus. Moreover, cluster lag consensus for multi-agent systems with a time-varying communication topology and heterogeneous multi-agent systems with a directed topology are studied. Finally, the effectiveness of the proposed protocol is demonstrated by some numerical simulations.  相似文献   

12.
This work considers a distributed adaptive output feedback control problem for nonlinear constrained multi-agent systems (MAS) in the prescribed finite time. To begin with, a state observer is constructed to estimate the unmeasurable state. Then, we develop a novel observer based distributed adaptive prescribed finite time output feedback control algorithm by incorporating the prescribed finite-time control technique into the backstepping design method. Through Lyapunov stability theory, it can be shown that all signals of MASs are bounded, the tracking errors converge to the adjustable regions around the origin within the pre-given error accuracy and settling time, and all states keep in the prescribed constraint regions. Finally, a simulation example verifies the efficacy of the obtained theoretical results.  相似文献   

13.
In this work, a model-free adaptive sliding mode control (ASMC) methodology is proposed for synchronization of chaotic fractional-order systems (FOSs) with input saturation. Based on the frequency distributed model and the non-integer version of the Lyapunov stability theorem, a model-free ASMC method is designed to overcome the chaotic behavior of the FOSs. The control inputs are free from the nonlinear-linear dynamical terms of the system because of utilizing the boundedness feature of the states of chaotic FOSs. Moreover, a new medical image encryption scheme is tentatively proposed according to our synchronization method, and its effectiveness is verified by numerical simulations. Furthermore, the performance and security analyses are given to confirm the superiority of the proposed encryption scheme, including statistical analysis, key space analysis, differential attack analysis, and time performance analysis.  相似文献   

14.
In this paper, the distributed adaptive fault estimation issue using practical fixed-time design is investigated for attitude synchronization control systems. A distributed fault estimation observer is proposed based on the fixed-time technique. Meanwhile, a novel fixed-time adaptive fault estimation algorithm is also constructed to guarantee convergence rate and improve estimation rapidity. The fault estimation error is uniformly ultimately bounded and is practically fixed-time stable, which converges to the neighborhood of the origin in a fixed time. Finally, simulation results of an attitude synchronization control system are presented to verify the effectiveness of proposed techniques.  相似文献   

15.
In this paper, we study the consensus tracking control problem of a class of strict-feedback multi-agent systems (MASs) with uncertain nonlinear dynamics, input saturation, output and partial state constraints (PSCs) which are assumed to be time-varying. An adaptive distributed control scheme is proposed for consensus achievement via output feedback and event-triggered strategy in directed networks containing a spanning tree. To handle saturated control inputs, a linear form of the control input is adopted by transforming the saturation function. The radial basis function neural network (RBFNN) is applied to approximate the uncertain nonlinear dynamics. Since the system outputs are the only available data, a high-gain adaptive observer based on RBFNN is constructed to estimate the unmeasurable states. To ensure that the constraints of system outputs and partial states are never violated, a barrier Lyapunov function (BLF) with time-varying boundary function is constructed. Event-triggered control (ETC) strategy is applied to save communication resources. By using backstepping design method, the proposed distributed controller can guarantee the boundedness of all system signals, consensus tracking with a bounded error and avoidance of Zeno behavior. Finally, the correctness of the theoretical results is verified by computer simulation.  相似文献   

16.
Most of the available results of iterative learning control (ILC) are that solve the consensus problem of lumped parameter models multi-agent systems. This paper considers the consensus control problem of distributed parameter models multi-agent systems with time-delay. By using the knowledge between neighboring agents, considering time-delay problem in the multi-agent systems, a distributed P-type iterative learning control protocol is proposed. The consensus error between any two agents in the sense of L2 norm can converge to zero after enough iterations based on proposed ILC law. And then we extend these conclusions to Lipschitz nonlinear case. Finally, the simulation result shows the effectiveness of the control method.  相似文献   

17.
In this paper, the distributed impulsive control for heterogeneous multi-agent systems based on event-triggered approach is investigated. According to whether the information transfer of the dynamic compensator is continuous or not, two different kinds of impulsive controllers are designed, respectively. Based on these two kinds of controllers, the corresponding distributed event-triggered conditions are provided, which make the impulsive instants of all agents do not need occur simultaneously. Moreover, the lower bound of impulsive intervals can also be guaranteed for all the event-triggered conditions, which means that the control schemes given in this paper can avoid the Zeno-behavior successfully. Eventually, a simulation example is proposed to support the effectiveness of the results obtained in this paper.  相似文献   

18.
The tracking problem of high-order nonlinear multi-agent systems (MAS) with uncertainty is solved by designing adaptive sliding mode control. During the tracking process, node failures are possible to occur, a new agent replaces the failed one. Firstly, a distributed nonsingular terminal sliding mode(NTSM) control scheme is designed for the tracking agents. A novel continuous function is designed in the NTSM to eliminate the singularity and meanwhile guarantee the estimation of finite convergence time. Secondly, the unknown uncertainties in the tracking agents are compensated by proposing an adaptive mechanism in the NTSM. The adaptive mechanism adjusts the control input through estimating the derivative bound of the unknown uncertainties dynamically. Thirdly, the tracking problem with node failures and agent replacements is further investigated. Based on the constructed impulsive-dependent Lyapunov function, it is proved that the overall system will track the target in finite time even with increase of jump errors. Finally, comparison simulations are conducted to illustrate the effectiveness of proposed adaptive nonsingular terminal sliding mode control method for tracking systems suffering node failures.  相似文献   

19.
This paper addresses the challenging problem of decentralized adaptive control for a class of coupled hidden leader-follower multi-agent systems, in which each agent is described by a nonlinearly parameterized uncertain model in discrete time and can interact with its neighbors via the history information from its neighbors. One of the agents is a leader, who knows the desired reference trajectory, while other agents cannot receive the desired reference signal or are unaware of existence of the leader. In order to tackle unknown internal parameters and unknown high-frequency gains, a projection-type parameter estimation algorithm is proposed. Based on the certainty equivalence principle and neighborhood history information, the decentralized adaptive control is designed, under which, the boundedness of identification error is guaranteed with the help of the Lyapunov theory. Under some conditions, it is shown that the multi-agent system eventually achieves synchronization in the presence of strong couplings. Finally, a simulation example is given to support the results of the proposed scheme.  相似文献   

20.
This paper investigates the consensus tracking problem of leader-follower multi-agent systems. Different from most existing works, dynamics of all the agents are assumed completely unknown, whereas some input-output data about the agents are available. It is well known from the Willems et al. Fundamental Lemma that when inputs of a linear time-invariant (LTI) system are persistently exciting, all possible trajectories of the system can be represented in terms of a finite set of measured input-output data. Building on this idea, the present paper proposes a purely data-driven distributed consensus control policy which allows all the follower agents to track the leader agent’s trajectory. It is shown that for a linear discrete-time multi-agent system, the corresponding controller can be designed to ensure the global synchronization with local data. Even if the data are corrupted by noises, the proposed approach is still applicable under certain conditions. Numerical examples corroborate the practical merits of the theoretical results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号