首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT

During the course of a training programme, runners will typically increase running velocity and volume possibly encountering fatigue during a run, which is characterised as a feeling of general tiredness. The purpose of the current study was to identify whether or not level of perceived fatigue affects coordination and coordination variability in healthy runners during the recovery velocity of an endurance interval run. A total of 20 endurance runners completed a 1-hour run that included running velocity intervals at 75% of estimated 10 k race pace (5 minutes) and estimated 10 k race pace (1 minute). After each run, participants completed a fatigue questionnaire and were grouped based on their post-run self-reported perceived fatigue. 3D motion capture data were collected during the run and analysed to generate coordination patterns and variability of the patterns as dependent variables. Multiple mixed model ANOVAs were conducted to test for differences between perceived fatigue groups. Coordination and variability differences were reported in a number of couplings during transition phases (late and early stance) and events (toe-off and foot contact) of the gait cycle. It was concluded that the level of perceived fatigue affected coordination and coordination variability during the recovery velocity of a 1-hour interval run.  相似文献   

2.
ABSTRACT

Coordinative variability (CAV) and underlying coordinative patterns are potential running-related overuse injury (RROI) mechanisms, but prospective analyses are needed. This study compared lower limb CAV and coordinative patterns between prospectively injured and uninjured runners. Knee, shank, and ankle kinematics were collected for 39 recreational runners at the beginning of a 6-month follow-up period. Subjects were classified as injured (n=21) or controls (n=18) based on RROI incidence during follow-up. CAV was quantified using modified vector coding. Time spent in each coordinative pattern category was quantified using binning frequency analysis. Coordinative patterns were classified as mechanically unsound if underlying joint/segment motions opposed anatomically allowable running motion. Wilcoxon Rank-Sum tests compared CAV and binning frequencies between groups within different stance portions for knee-shank, shank-ankle, and knee-ankle couplings (α≤0.05). During initial-stance, the injured group displayed significantly greater knee-ankle CAV (effect size (ES)=1.1), knee-shank CAV (ES=0.97), and greater frequency of mechanically unsound knee-shank (ES=0.72) and shank-ankle (ES=0.63) motion. During mid-stance, the injured group displayed lower frequency of mechanically sound knee-ankle motion (ES=0.31). In late-stance, the injured group displayed greater shank-ankle CAV (ES=0.11). Mechanically unsound coordinative patterns along with greater knee-ankle and shank-ankle CAV potentially lead to RROI.  相似文献   

3.
The purpose of this study was to examine the differences in coordination variability in running gait between trained runners and non-runners using continuous relative phase (CRP) analysis. Lower extremity kinematic data were collected for 22 participants during the stance phase. The participants were assigned to either a runner or non-runner group based on running volume training. Segment coordination and coordination variability were calculated for selected hip–knee and knee–ankle couplings. Independent t-tests and magnitude-based inferences were used to compare the 2 groups. There were limited differences in the CRP and its variability among runners and non-runner groups. The runners group achieved moderately lower coordination compared with non-runners group in the phase angle for hip abduction/adduction and knee flexion/extension. The runners tended to show moderately lower coordination variability in the phase angle for knee flexion/extension and subtalar inversion/eversion in comparison to non-runners group. These results suggested that levels of experience as estimated from weekly training volume had little influence on coordination and its variability.  相似文献   

4.
The study investigated the coordination and variability of posture and pistol motion for skilled pistol shooters and novices in a pistol-aiming task. The participants stood on a force platform and held a pistol with the preferred arm to aim for accuracy to a target on 30 s trials. The results revealed that the amount of the centre of pressure (COP) and pistol motion was lower for the expert than novice group. The time–varying structure of COP as indexed by multiscale entropy (MSE) and detrended fluctuation analysis (DFA) was also lower for the expert than the novice group. The relative phase between the COP in the anterior–posterior (AP) and pistol in the AP and between the COP in the medial–lateral (ML) and pistol in AP was close to inphase for the both groups. However, for the novice group the coordination patterns of posture and pistol motion were more variable with the pistol motion leading the posture motion while it was lagging in the skilled group. The findings show different qualitative and quantitative dynamics in pistol-aiming as a function of skill level with postural control foundational to supporting the reduced dispersion and complexity of the skilled arm-pistol motion.  相似文献   

5.
BackgroundSegment coordination variability (CV) is a movement pattern associated with running-related injuries. It can also be adversely affected by a prolonged run. However, research on this topic is currently limited. The purpose of this study was to investigate the effects of a prolonged run on segment CV and vertical loading rates during a treadmill half marathon.MethodsFifteen healthy runners ran a half marathon on an instrumental treadmill in a biomechanical laboratory. Synchronized kinematic and kinetic data were collected every 2 km (from 2 km until 20 km), and the data were processed by musculoskeletal modeling. Segment CVs were computed from the angle-angle plots of selected pelvis-thigh, thigh-shank, and shank-rearfoot couplings using a modified vector coding technique. The loading rate of vertical ground reaction force was also calculated. A one-way MANOVA with repeated measures was performed on each of the outcome variables to examine the main effect of running mileage.ResultsSignificant effects of running mileage were found on segment CVs (p ≤ 0.010) but not on loading rate (p = 0.881). Notably, during the early stance phase, the CV of pelvis frontal vs. thigh frontal was significantly increased at 20 km compared with the CV at 8 km (g = 0.59, p = 0.022). The CV of shank transverse vs. rearfoot frontal decreased from 2 km to 8 km (g = 0.30, p = 0.020) but then significantly increased at both 18 km (g = 0.05, p < 0.001) and 20 km (g = 0.36, p < 0.001).ConclusionAt the early stance, runners maintained stable CVs on the sagittal plane, which could explain the unchanged loading rate throughout the half marathon. However, increased CVs on the frontal/transverse plane may be an early sign of fatigue and indicative of possible injury risk. Further studies are necessary for conclusive statements in this regard.  相似文献   

6.
ABSTRACT

Ultra-cushioning (ULTRA) shoes are new to the running shoe market. Several studies have evaluated kinematics and kinetics while running in ULTRA shoes, however it remains unknown how such shoes influence joint coordination. Therefore, the purpose of this study was to evaluate lower extremity coordination and coordination variability when running in minimalist (MIN), traditional (NEUT) and ULTRA shoes. Fifteen runners ran for ten minutes in each shoe type. Coordination patterns and coordination variability were assessed for rearfoot-tibia, rearfoot-knee, and tibia-knee couplings using a modified vector coding method during early, mid, and late stance periods. During late stance ULTRA shoes resulted in more antiphase coordination than MIN (p =.036) or NEUT (p =.047) shoes and less in-phase coordination than MIN (p =.048) or NEUT (p =.013) shoes. During late stance there was also more proximal phase rearfoot-knee coordination in ULTRA shoes than in either MIN (p =.039) or NEUT (p =.005) shoes and less in-phase coordination in ULTRA shoes than in NEUT shoes (p =.006). There were no differences in coordination variability between shoes during any phase. The differences in coordination may have implications for tissue loading and injury development when running in ULTRA shoes..  相似文献   

7.
Abstract

A case study visualisation approach to examining the coordination and variability of multiple interacting segments is presented using a whole-body gymnastic skill as the task example. One elite male gymnast performed 10 trials of 10 longswings whilst three-dimensional locations of joint centres were tracked using a motion analysis system. Segment angles were used to define coupling between the arms and trunk, trunk and thighs and thighs and shanks. Rectified continuous relative phase profiles for each interacting couple for 80 longswings were produced. Graphical representations of coordination couplings are presented that include the traditional single coupling, followed by the relational dynamics of two couplings and finally three couplings simultaneously plotted. This method highlights the power of visualisation of movement dynamics and identifies properties of the global interacting segmental couplings that a more formal analysis may not reveal. Visualisation precedes and informs the appropriate qualitative and quantitative analysis of the dynamics.  相似文献   

8.
The purpose of this study was to examine the impact of age on running mechanics separately for male and female runners and to quantify sex differences in running mechanics and coordination variability for older runners. Kinematics and kinetics were captured for 20 younger (10 male) and 20 older (10 male) adults running overground at 3.5 m · s?1. A modified vector coding technique was used to calculate segment coordination variability. Lower extremity joint angles, moments and segment coordination variability were compared between age and sex groups. Significant sex–age interaction effects were found for heel-strike hip flexion and ankle in/eversion angles and peak ankle dorsiflexion angle. In older adults, mid-stance knee flexion angle, ankle inversion and abduction moments and hip abduction and external rotation moments differed by sex. Older compared with younger females had reduced coordination variability in the thigh–shank transverse plane couple but greater coordination variability for the shank rotation–foot eversion couple in early stance. These results suggest there may be a non-equivalent aging process in the movement mechanics for males and females. The age and sex differences in running mechanics and coordination variability highlight the need for sex-based analyses for future studies examining injury risk with age.  相似文献   

9.
The purpose of this study was to compare the lower extremity inter-joint coordination of different collision forces runners during running braking phase. A dynamical system approach was used to analyse the inter-joint coordination parameters. Data were collected with six infra-red cameras and two force plates. According to the impact peak of the vertical ground reaction force, twenty habitually rearfoot-strike runners were categorised into three groups: high collision forces runners (HF group, n = 8), medium collision forces runners (MF group, n = 5), and low collision forces runners (LF group, n = 7). There were no significant differences among the three groups in the ankle and knee joint angle upon landing and in the running velocity (p > 0.05). The HF group produced significantly smaller deviation phase (DP) of the hip flexion/extension-knee flexion/extension during the braking phase compared with the MF and LF groups (p < 0.05). The DP of the hip flexion/extension-knee flexion/extension during the braking phase correlated negatively with the collision force (p < 0.05). The disparities regarding the flexibility of lower extremity inter-joint coordination were found in high collision forces runners. The efforts of the inter-joint coordination and the risk of running injuries need to be clarified further.  相似文献   

10.
Fatigue, developed over the course of a run, may cause changes in running kinematics. Training status may influence the effect of fatigue on running kinematics, since well trained, competitive runners are used to running until exhaustion, whereas novice runners are not. This study aimed to determine changes in running kinematics during an exhaustive run in both novice (NOVICE) and competitive (COMP) long-distance runners. About 15 NOVICE and 15 COMP runners performed a treadmill run, until voluntary exhaustion at 3,200 m time trial pace. Joint angles and global trunk and pelvis angles were recorded at the beginning and at the end of the run. In both groups, peak pelvic anterior tilt, pelvic rotation range of motion (both during stance phase) and ankle plantar flexion during swing phase increased after the exhaustive run. There was a significant interaction effect between group and exhaustion for peak forward trunk lean, which increased only in the NOVICE group, and for hip abduction during mid-swing, which increased in NOVICE and decreased in COMP runners. In conclusion, NOVICE runners showed larger kinematic adjustments when exhausted than COMP runners. This may affect their running performance and should be taken into account when assessing a runner’s injury risk.  相似文献   

11.
Alterations in joint mechanics have been associated with common overuse injuries. An increase in running cadence in healthy runners has been shown to improve several parameters that have been tied to injury, but the reorganisation of motion that produces these changes has not been examined. The purpose of this study was to determine if runners change their segment coordination and coordination variability with an acute increase in cadence. Data were collected as ten uninjured runners ran overground at their preferred cadence as well as a cadence 10% higher than preferred. Segment coordination and coordination variability were calculated for select thigh–shank and shank–foot couples and selected knee mechanics were also calculated. Paired t-tests were used to examine differences between the preferred and increased cadence conditions. With increased cadence, there was a decrease in peak knee flexion and a later occurrence of peak knee flexion and internal rotation and shank internal rotation. Segment coordination was altered with most changes occurring in mid-late stance. Coordination variability decreased with an increase in cadence across all couples and phases of gait. These results suggest examination of coordination and its variability could give insight into the risk of intervention-induced injury.  相似文献   

12.
This study aimed to establish the nature of lower extremity intra-limb coordination variability in cycling and to investigate the coordinative adaptations that occur in response to changes in cadence and work rate. Six trained and six untrained males performed nine pedalling bouts on a cycle ergometer at various cadences and work rates (60, 90, and 120 revolutions per minute (rpm) at 120, 210, and 300W). Three-dimensional kinematic data were collected and flexion/extension angles of the ankle, knee, and hip joints were subsequently calculated. These data were used to determine two intra-limb joint couplings [hip flexion/extension-knee flexion/extension (HK) and knee flexion/extension-ankle plantar-flexion/dorsi-flexion (KA)], which were analysed using continuous relative phase analysis. Trained participants displayed significantly (p < 0.05) lower coordination variability (6.6 +/- 4.0 degrees) than untrained participants (9.2 +/- 4.7 degrees). For the trained subjects, the KA coupling displayed significantly more in-phase motion in the 120 rpm (19.2 +/- 12.3 degrees) than the 60 (30 +/- 7.1 degrees) or 90 rpm (33.1 +/- 7.4 degrees) trials and the HK coupling displayed significantly more in-phase motion in the 90 (33.3 +/- 3.4 degrees) and 120 rpm (27.9 +/- 13.6 degrees) than in the 60 rpm trial (36.4 +/- 3.5 degrees). The results of this study suggest that variability may be detrimental to performance and that a higher cadence is beneficial. However, further study of on-road cycling is necessary before any recommendations can be made.  相似文献   

13.
Abstract

Introduction: In response to fatigue during an exhaustive treadmill run, forefoot runner’s muscles must adapt to maintain their pace. From a neuromuscular control perspective, certain muscles may not be able to sustain the force to meet the run’s demands; thus, there may be alternative muscle coordination in the lower extremity that allows for continued running for an extended period of time. The aim of this study was to quantify the change in muscle coordination during a prolonged run in forefoot runners.

Methods: Thirteen forefoot runners performed exhaustive treadmill runs (mean duration: 15.4?±?2.2?min). The muscle coordination of seven lower extremity muscles was quantified using a high-resolution time–frequency analysis together with a pattern recognition algorithm.

Results: The mean EMG intensity for the lateral and medial gastrocnemius muscles decreased with the run (p?=?0.02; 0.06). The weight factors of the second principal pattern decrease by 128.01% by the end of run (p?=?0.05, Cohen’s d?=?0.42) representing a relatively greater biceps femoris activation in midstance but smaller midstance rectus femoris, vastus medialis, triceps surae, and tibialis anterior activation.

Discussion: These results suggest that forefoot runners cannot sustain plantar flexor activation throughout an exhaustive run and change their muscle coordination strategy as a compensation. Understanding the underlying compensation mechanisms humans use to cope with fatigue will help to inform training modalities to enhance these late stage muscle activation strategies for athletes with the goal of improving performance and reducing injury.  相似文献   

14.
The purpose of this study was to investigate the nature of inter-joint coordination at different levels of skilled performance to: (1) distinguish learners who were successful versus unsuccessful in terms of their task performance; (2) investigate the pathways of change during the learning of a new coordination pattern and (3) examine how the learner’s coordination patterns relate to those of experts in the longswing gymnastics skill. Continuous relative phase of hip and shoulder joint motions was examined for longswings performed by two groups of novices, successful (n = 4) and unsuccessful (n = 4) over five practice sessions, and two expert gymnasts. Principal component analysis showed that during longswing positions where least continuous relative phase variability occurred for expert gymnasts, high variability distinguished the successful from the unsuccessful novice group. Continuous relative phase profiles of successful novices became more out-of-phase over practice and less similar to the closely in-phase coupling of the expert gymnasts. Collectively, the findings support the proposition that at the level in inter-joint coordination a technique emerges that facilitates successful performance but is not more like an expert’s movement coordination. This finding questions the appropriateness of inferring development towards a “gold champion” movement coordination.  相似文献   

15.
Current methods of assessing coordination in Paralympic classification are non-instrumented and are based on ordinal scales of measurement and therefore impede the development of evidence-based methods of classification. This paper describes an instrumented battery of tests that measure impaired coordination in a way that will permit evidence-based classification. Test–retest reliability and normative values for each of the tests are reported. Twenty participants visited the laboratory on two occasions, each time completing 11 tests: three running-specific, lower-limb reciprocal tapping tests (yielding five outcome measures); four throwing-specific, upper-limb discrete tapping tests (yielding four outcome measures); and four wheelchair-specific, upper-limb reciprocal tapping tests yielding seven outcome measures. Reliability was evaluated using Intra-class Correlation Coefficients (ICCs), Standard Error of Measurement, Limits of Agreement and Paired t-tests. ICCs for fourteen of the 16 outcome measures were excellent (ICC ≥ 0.80), although systematic bias was evident in two of these—a unilateral, running-specific lower-limb tests on the non-dominant side, and a unilateral wheelchair-specific upper limb test on the dominant side. ICCs for two tests—a bilateral wheelchair-specific upper limb test (0.74), and a unilateral wheelchair-specific upper limb test on the non-dominant side (0.54)—were good and fair respectively. Results indicate that 12 of the measures evaluated have measurement properties that will facilitate the development of evidence-based methods of Paralympic classification in athletics. Positional adjustment and increased familiarization may improve reliability in the other four. Studies evaluating reliability of this test battery in people with coordination impairments are warranted.  相似文献   

16.
Abstract

We assessed autonomic nervous system modulation through changes in heart rate variability during an archery competition as well as archery performance by comparing novice and experienced adolescent archers. Seven novice (age 14.0 ± 8.5 years, body mass index 22.9 ± 4.3 kg · m?2, training experience 0.4 ± 0.3 years) and ten experienced archers (age 16.5 ± 10.3 years, body mass index 22.4 ± 3.1 kg · m?2, training experience 4.1 ± 0.9 years) volunteered. Using beat-by-beat heart rate monitoring, heart rate variability was measured for 20 s before each arrow shot during two rounds of competition. We found that, compared with novices, experienced adolescent archers: (i) take more time per shot; (ii) have a higher low frequency band, square root of the mean of squared differences between successive R-R intervals (i.e. the time elapsing between two consecutive R waves in the electrocardiogram), and percentage of successive normal-to-normal intervals greater than 50 ms; and (iii) demonstrate an increase in parasympathetic nervous system activity compared with pre-competition values. We propose that these characteristics of experienced archers are appropriate for optimal performance during competition.  相似文献   

17.
ABSTRACT

Distal-to-proximal redistribution of joint work occurs following exhaustive running in recreational but not competitive runners but the influence of a submaximal run on joint work is unknown. The purpose of this study was to assess if a long submaximal run produces a distal-to-proximal redistribution of positive joint work in well-trained runners. Thirteen rearfoot striking male runners (weekly distance: 72.6 ± 21.2 km) completed five running trials while three-dimensional kinematic and ground reaction force data were collected before and after a long submaximal treadmill run (19 ± 6 km). Joint kinetics were calculated from these data and percent contributions of joint work relative to total lower limb joint work were computed. Moderate reductions in absolute negative ankle work (p = 0.045, Cohen’s d = 0.31), peak plantarflexor torque (p = 0.004, d = 0.34) and, peak negative ankle power (p = 0.005, d = 0.32) were observed following the long run. Positive ankle, knee and hip joint work were unchanged (p < 0.05) following the long run. These findings suggest no proximal shift in positive joint work in well-trained runners after a prolonged run. Runner population, running pace, distance, and relative intensity should be considered when examining changes in joint work following prolonged running.  相似文献   

18.
The initial stance position (ISP) has been observed as a factor affecting the execution technique during taekwondo kicks. In the present study, authors aimed to analyse a roundhouse kick to the chest by measuring movement coordination and the variability of coordination and comparing this across the different ISP (0°, 45° and 90°). Eight experienced taekwondo athletes performed consecutive kicking trials in random order from every of the three relative positions. The execution was divided into three phases (stance, first swing and second swing phase). A motion capture system was used to measure athletes’ angular displacement of pelvis and thigh. A modified vector coding technique was used to quantify the coordination of the segments which contributed to the overall movement. The variability of this coordination (CV) for each ISP was also calculated. Comparative analysis showed that during the stance phase in the transverse plane, athletes coordinated movement of the trunk and thigh with a higher frequency of in-phase and lower frequency of exclusive thigh rotation in the 0° stance than the 90° stance position (< 0.05). CV was also influenced by the different ISP. During the first swing and the majority of the second swing phase, predominant in-phase coordination of the pelvis and thigh was observed. Including exercises that require in-phase movement could not only help athletes to acquire coordination stability but also efficiency. The existence of a constraint such as ISP implies an increase of the variability when the athletes have to kick from ISP they are not used to adopt (i.e., 0° and 90° ISP) as an evidence of adaptability in the athletes’ execution technique.  相似文献   

19.
Abstract

Recent literature has related differences in pelvis–trunk coordination to low back pain (LBP) status. In addition, repetitive motions involving bending and twisting have been linked to high incidence of LBP. The purpose of this study was to examine trunk sagittal motion – axial rotation (‘bend and twist’) coordination during locomotion in three groups of runners classified by LBP status (LBP: current low back pain; RES: resolved low back pain and CTR: control group with no history of LBP). Trunk kinematic data were collected as running speed was systematically increased on a treadmill. Within-segment coordination between trunk sagittal and transverse planes of motion (trunk lean and axial rotation, respectively) was calculated using continuous relative phase (CRP), and coordination variability was defined as the between stride cycle standard deviation of CRP (CRPvar). Bend–twist coordination was more in-phase for the LBP group than CTR (p = 0.010) regardless of running speed. No differences in CRPvar were found between the groups. The results from our coordination (CRP) analysis were sensitive to LBP status and suggest that multi-plane interactions of the trunk should be considered in the assessment of LBP. This analysis also has potential for athletically oriented tasks that involve multi-plane interactions of the trunk, particularly ones that contain asymmetric action, such as sweep rowing or a shot on goal in field hockey or ice hockey.  相似文献   

20.
The aims of this study were to examine the effect of different environmental constraints on kinematic multi-segment coordination patterns during the service and its coordination with service time variability. Ten expert tennis players (Age: 34.1 ± 5.3) volunteered to take part in this study. Participants served 30 times in 3 different conditions: control, target and opposition. The order of conditions was counterbalanced between participants. A wireless 3D motion capture system (STT Co, Spain) was used to measure 7 joint motions, with a 17 degrees of freedom biomechanical model created to capture the entire service action. Results of the principal component analysis showed that 4 synergies were created; however, their roles were changed relative to the perception of the environment. The results of repeated-measures analysis of variance did not show any significant difference on total variance and individual principal components between conditions; however, one synergy pattern significantly predicted the service time variability in both control and opposition conditions. In conclusion, the findings demonstrated that expert performers reduce the joint dimensionality by creating functional synergies in different phases of service and adapt the service action according to the perception of the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号