首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Biophysical loading of the elbow and wrist is a potential reason for chronic lesions in gymnastics and present a real concern for coaches, scientist and clinicians. Previous research has identified injury risk factors during round-off (RO) skills in elite female gymnasts. The aim of this study was to investigate key elbow and wrist joint injury risk factors during different techniques of fundamental cartwheel (CW) and RO skills performed by young female artistic gymnasts. Seventeen active young female gymnasts performed 30 successful trials of both CW and RO from a hurdle step with three different hand positions (parallel (10), T-shape (10) and reverse (10)). Synchronised kinematic (240?Hz) and kinetic (1200?Hz) data were collected for each trial. One-way repeated measures ANOVA and effect size (ES) were used for statistical analysis. The results showed statistically significant differences (P?0.8) among hand positions for peak vertical ground reaction force (VGRF), peak elbow compression force, peak wrist compression force, elbow internal adduction moment and wrist dorsiflexion angle. In conclusion, the parallel and reverse techniques increase peak VGRF, elbow and wrist compression forces, and elbow internal adduction moment. These differences indicate that the parallel and reverse techniques may increase the potential of elbow and wrist injuries in young gymnasts compared with the T-shape technique; this is of particular importance with the high frequency of the performance of these fundamental skills.  相似文献   

2.
The aim of this study was to examine the biomechanical injury risk factors at the wrist, including joint kinetics, kinematics and stiffness in the first and second contact limb for parallel and T-shape round-off (RO) techniques. Seven international-level female gymnasts performed 10 trials of the RO to back handspring with parallel and T-shape hand positions. Synchronised kinematic (3D motion analysis system; 247 Hz) and kinetic (two force plates; 1235 Hz) data were collected for each trial. A two-way repeated measure analysis of variance (ANOVA) assessed differences in the kinematic and kinetic parameters between the techniques for each contact limb. The main findings highlighted that in both the RO techniques, the second contact limb wrist joint is exposed to higher mechanical loads than the first contact limb demonstrated by increased axial compression force and loading rate. In the parallel technique, the second contact limb wrist joint is exposed to higher axial compression load. Differences between wrist joint kinetics highlight that the T-shape technique may potentially lead to reducing these bio-physical loads and consequently protect the second contact limb wrist joint from overload and biological failure. Highlighting the biomechanical risk factors facilitates the process of technique selection making more objective and safe.  相似文献   

3.
Chronic elbow injuries from tumbling in female gymnastics present a serious problem for performers. This research examined how the biomechanical characteristics of impact loading and elbow kinematics and kinetics change as a function of technique selection. Seven international-level female gymnasts performed 10 trials of the round-off from a hurdle step to flic-flac with ‘parallel’ and ‘T-shape’ hand positions. Synchronized kinematic (3D-automated motion analysis system; 247 Hz) and kinetic (two force plates; 1,235 Hz) data were collected for each trial. Wilcoxon non-parametric test and effect-size statistics determined differences between the hand positions examined in this study. Significant differences (p < 0.05) and large effect sizes (ES>0.8) were observed for peak vertical ground reaction force (GRF), anterior–posterior GRF, resultant GRF, loading rates of these forces and elbow joint angles, and internal moments of force in sagittal, transverse, and frontal planes. In conclusion, the T-shape hand position reduces vertical, anterior–posterior, and resultant contact forces and has a decreased loading rate indicating a safer technique for the round-off. Significant differences observed in joint elbow moments highlighted that the T-shape position may prevent overloading of the joint complex and consequently reduce the potential for elbow injury.  相似文献   

4.
Increased lateral trunk bending to the injured side has been observed when ACL injuries occur. The purpose was to quantify the effect of mid-flight lateral trunk bending on center of mass (COM) positions and subsequent landing mechanics during a jump-landing task. Forty-one recreational athletes performed a jump-landing task with or without mid-flight lateral trunk bending. When the left and right trunk bending conditions were compared with the no trunk bending condition, participants moved the COM of the upper body to the bending direction, while the COM of the pelvis, ipsilateral leg, and contralateral leg moved away from the bending direction relative to the whole body COM. Participants demonstrated increased peak vertical ground reaction forces (VGRF) and knee valgus and internal rotation angles at peak VGRF for the ipsilateral leg, but decreased peak VGRF and knee internal rotation angles at peak VGRF and increased knee varus angles at peak VGRF for the contralateral leg. Mid-flight lateral trunk resulted in an asymmetric landing pattern associated with increased ACL loading for the ipsilateral leg. The findings may help to understand altered trunk motion during ACL injury events and the discrepancy in ACL injuries related to limb dominance in badminton and volleyball.  相似文献   

5.
We evaluated the efficacy of an in-field gait retraining programme using mobile biofeedback to reduce cumulative and peak tibiofemoral loads during running. Thirty runners were randomised to either a retraining group or control group. Retrainers were asked to increase their step rate by 7.5% over preferred in response to real-time feedback provided by a wrist mounted running computer for 8 routine in-field runs. An inverse dynamics driven musculoskeletal model estimated total and medial tibiofemoral joint compartment contact forces. Peak and impulse per step total tibiofemoral contact forces were immediately reduced by 7.6% and 10.6%, respectively (P < 0.001). Similarly, medial tibiofemoral compartment peak and impulse per step tibiofemoral contact forces were reduced by 8.2% and 10.6%, respectively (P < 0.001). Interestingly, no changes were found in knee adduction moment measures. Post gait retraining, reductions in medial tibiofemoral compartment peak and impulse per step tibiofemoral contact force were still present (P < 0.01). At the 1-month post-retraining follow-up, these reductions remained (P < 0.05). With these per stance reductions in tibiofemoral contact forces in mind, cumulative tibiofemoral contact forces did not change due to the estimated increase in number of steps to run 1 km.  相似文献   

6.
The incidence of patellofemoral pain (PFP) is 2 times greater in females compared with males of similar activity levels; however, the exact reason for this discrepancy remains unclear. Abnormal mechanics of the hip and knee in the sagittal, frontal, and transverse planes have been associated with an increased risk of PFP. The purpose of this study was to compare the mechanics of the lower extremity in males and females during running in order to better understand the reason(s) behind the sex discrepancy in PFP. Three-dimensional kinematic and kinetic data were collected as male and female participants completed overground running trials at a speed of 4.0 m · s?1 (±5%). Patellofemoral joint stress (PFJS) was estimated using a sagittal plane knee model. The kinematics of the hip and knee in the frontal and transverse planes were also analysed. Male participants demonstrated significantly greater sagittal plane peak PFJS in comparison with the female participants (P < .001, ES = 1.9). However, the female participants demonstrated 3.5° greater peak hip adduction and 3.4° greater peak hip internal rotation (IR). As a result, it appears that the sex discrepancy in PFP is more likely to be related to differences in the kinematics of the hip in the frontal and transverse planes than differences in sagittal plane PFJS.  相似文献   

7.
Three‐dimensional (3‐D) high‐speed cinematography was used to record the penalty throw in water polo by six elite male (M) and six elite female (F) players. The direct linear transformation technique (DLT) was used in the 3‐D space reconstruction from 2‐D images recorded via laterally placed phase‐locked cameras operating at 200 Hz. Five of the twelve subjects lifted the ball from underneath at the start of the throw whilst the remaining subjects opted for a rotation lift. As the ball was brought behind the head the females used very little hip and shoulder rotation compared to the male players so that four of the six female subjects were square on to the target at the rear point. At the completion of the backswing the wrist was flexed to a similar angle (M‐162°; F‐158°); the elbow angle showed significantly greater flexion for females (85°) than males (107°).

During the forward swing, from rear point to release, the wrist joint of the female players flexed from a rear point angle of 158° to 148° at release. The wrist movement for male subjects was different from the females in that it flexed from 162° to 147°, 0.10 s prior to release and then extended to 159° at palmar release before again flexing to 156° at release. The amount of elbow extension during the forward swing was 48° for both groups; however, the females actually released the ball with the forearm vertical (89°) compared to the male forearm angle of 78°. Maximum angular velocity of the wrist and elbow occurred at release for 9 of the 12 subjects. Both the wrist and elbow joints (F‐148°; M‐156° at wrist and F‐126°; M‐148° at elbow) demonstrated greater flexion at release in female subjects, compared with males. Maximum linear endpoint velocities for the forearm and hand segments occurred at ball release resulting in mean ball velocities of 19.1 m s ‐1 and 14.7 m s‐ 1 for male and female subjects respectively.  相似文献   

8.
ABSTRACT

A large peak hip adduction angle during running is a risk factor for several overuse injuries in women. The purpose of this study was to determine if female runners with a large peak hip adduction angle have differences in eccentric hip abductor muscle strength, hip neuromuscular control, and/or hip width to femoral length ratio (HW:FL) compared to those with a small angle. Hip adduction during running, hip strength, hip control, and HW:FL were measured in sixty healthy female runners (1.66 ± 0.06 m; 63.2 ± 8.3 kg; 27 ± 6 years). Data from twenty runners with the largest and twenty with the smallest peak hip adduction angles were analysed. Between-group differences in hip strength, control, and HW:FL were determined using independent t-tests (p < 0.05). Variables that were significantly different between groups were entered into a regression model. Runners in both groups had similar hip strength (p = 0.90) and control (p = 0.65). HW:FL was greater in the large peak angle group (p = 0.04), but only explained a small amount of peak hip adduction angle variance for all sixty runners (R2 = 0.05). Alarge peak hip adduction angle in some healthy female runners may simply be instinctive as there were no deficiencies in the strength or neuromuscular control constructs assessed.  相似文献   

9.
Waiter’s serve (WS) is a specific tennis serve posture frequently observed in young players, and commonly considered as a technical error by tennis coaches. However, biomechanical impact of WS is unknown. The aims of this study were to identify the potential consequences of WS in young elite players relating to performance and injury risk, and to explain the kinematic causes of WS. Serve of 18 male junior elite players (Top 10 national French ranking, aged 12–15 years) was captured with a 20 camera, 200?Hz VICON MX motion analysis system. Depending on their serve technique, the players were divided into two groups (WS versus Normal Serve [NS]) by experienced coaches. Injury data were collected for each player during a 12-month-period following the motion capture. Normalized peak kinetic values of the dominant arm were calculated using inverse dynamics. In order to explain WS posture, upper limb kinematics were calculated during the cocking and the acceleration phases of the serve. Shoulder internal rotation torque, wrist proximal and anterior forces (P?P?P?相似文献   

10.
Tennis coaches often use the fundamental throwing skill as a training tool to develop the service action. However, recent skill acquisition literature questions the efficacy of non-specific training drills for developing complex sporting movements. Thus, this study examined the mechanical analogy of the throw and the tennis serve at three different levels of development. A 500 Hz, 22-camera VICON MX motion capture system recorded 28 elite female tennis players (prepubescent (n = 10), pubescent (n = 10), adult (n = 8)) as they performed flat serves and overhand throws. Two-way ANOVAs with repeated measures and partial correlations (controlling for group) assessed the strength and nature of the mechanical associations between the tasks. Preparatory mechanics were similar between the two tasks, while during propulsion, peak trunk twist and elbow extension velocities were significantly higher in the throw, yet the peak shoulder internal rotation and wrist flexion angular velocities were significantly greater in the serve. Furthermore, all of these peak angular velocities occurred significantly earlier in the serve. Ultimately, although the throw may help to prime transverse trunk kinematics in the serve, mechanics in the two skills appear less similar than many coaches seem to believe. Practitioners should, therefore, be aware that the throw appears less useful for priming the specific arm kinematics and temporal phasing that typifies the tennis serve.  相似文献   

11.
Purpose:The purpose of this study was to compare knee biomechanics of the replaced limb to the non-replaced limb of total knee replacement(TKR)patients and healthy controls during walking on level ground and on decline surfaces of 5°,10°,and 15°.Methods:Twenty-five TKR patients and 10 healthy controls performed 5 walking trials on different decline slopes on a force platform and an instrumented ramp system.Two analyses of variance,2×2(limb×group)and 2×4(limb×decline slope),were used to examine selected biomechanics variables.Results:The replaced limb of TKR patients had lower peak loading-response and push-off knee extension moment than the non-replaced and the matched limb of healthy controls.No differences were found in loading-response and push-off knee internal abduction moments among replaced,non-replaced,and matched limb of healthy controls.The knee flexion range of motion,peak loading-response vertical ground reaction force,and peak knee extension moment increased across all slope comparisons between 0°and 15°in both the replaced and non-replaced limb of TKR patients.Conclusion:Downhill walking may not be appropriate to include in early stage rehabilitation exercise protocols for TKR patients.  相似文献   

12.
Fly-fishing is a popular form of recreation. Recent evidence has associated overhand fly-casting movements with upper extremity pain. However, little research exists on the motions and coordination common to fly-casting. The aim of this study was to establish upper extremity kinematic trends of fly-casting while casting greater line lengths. It was hypothesized that kinematic casting parameters would increase and time between peak angular velocities would decrease with greater line length. Eighteen males participated in the study. Three-dimensional motion capture was conducted to calculate shoulder, elbow, and wrist kinematics during casting conditions of 6.1, 12.2, 18.3, and 24.4 m of line. Multiple analyses of variance were used to assess the condition effect of line length on the kinematic variables (P = 0.05). Overall, total range of movement increased with increasing length of line cast. Peak angular velocity exhibited a proximal-to-distal trend: peak shoulder internal rotation followed by elbow extension, then wrist ulnar deviation. Time between peak shoulder and elbow angular velocities increased significantly as line length increased. Our findings indicate that specific changes in total range of movement accommodate the demands of casting greater lengths of line. Also, joint velocity coordination patterns of fly-casting appear to follow a proximal-to-distal pattern. These findings represent an initial foundation for connections between kinematics and upper extremity pain reported by fly-fisherman.  相似文献   

13.
14.
ABSTRACT

The purpose was to quantify the effects of mid-flight whole-body and trunk rotation on knee mechanics in a double-leg landing. Eighteen male and 20 female participants completed a jump-landing-jump task in five conditions: no rotation, testing leg ipsilateral or contralateral (WBRC) to the whole-body rotation direction, and testing leg ipsilateral (TRI) or contralateral to the trunk rotation direction. The WBRC and TRI conditions demonstrated decreased knee flexion and increased knee abduction angles at initial contact (2.6 > Cohen’s dz > 0.3) and increased peak vertical ground reaction forces and knee adduction moments during the 100 ms after landing (1.7 > Cohen’s dz > 0.3). The TRI condition also showed the greatest knee internal rotation angles at initial contact and peak knee abduction and internal rotation angles and peak knee extension moments during the 100 ms after landing (2.0 > Cohen’s dz > 0.5). Whole-body rotation increased contralateral knee loading because of its primary role in decelerating medial-lateral velocities. Trunk rotation resulted in the greatest knee loading for the ipsilateral knee due to weight shifting and mechanical coupling between the trunk and lower extremities. These findings may help understand altered trunk motion in anterior cruciate ligament injuries.  相似文献   

15.
The aim of this study was to investigate the influence of a suspended aid on the reaction forces during a basic skill on pommel horse. Twenty gymnasts performed three sets of 10 circles with and without a suspended aid on a pommel horse under which two force plates were set. The results confirmed that the suspended aid could reduce the magnitude of the pommel reaction forces during circles while maintaining the general loading pattern. On the left hand, the average and peak forces were attenuated to 0.59 body weight (BW) and 0.85 BW from 0.76 BW and 1.13 BW, respectively. The right hand experienced slightly larger forces with no-aid trials, but the asymmetry between the hands decreased with the aid. Despite a relatively large variability, all gymnasts experienced smaller impact peak forces with the aid. A suspended aid is most commonly used for a beginner gymnast as an introduction to pommel horse exercises. However, this study confirmed that it can also be useful for all levels of gymnasts who would like to practice pommel horse exercises with reduced pommel reaction forces for a purpose such as a progression for learning a new skill, control of training volume, or rehabilitation.  相似文献   

16.
Abstract

The purpose of this study was to investigate the eccentric torque–velocity and power–velocity relationships of the elbow flexors. Forty recreationally trained individuals (20 men, 20 women) performed maximal eccentric actions at each of five different velocities (1.04 rad · s?1, 2.09 rad · s?1, 3.14 rad · s?1, 4.18 rad · s?1, and 5.23 rad · s?1, in random order) and maximal isometric actions on a Biodex isokinetic dynamometer. A 2×6 (sex×velocity) mixed-factor repeated-measures analysis of variance (ANOVA) was used to assess peak elbow flexor torque during the eccentric and isometric actions. There was no interaction, but there were significant main effects for sex and velocity. Pairwise comparisons demonstrated that values for men were significantly (P<0.05) higher than those for women at all speeds. Furthermore, torques for both sexes were significantly less at 3.14 rad · s?1 (men: 103.94±28.28 N · m; women: 49.24±11.69 N · m) than at 4.18 rad · s?1 (men: 106.39±30.23 N · m; women: 52.77±11.31 N · m) and 5.23 rad · s?1 (men: 108.75±28.59 N · m; women: 53.3±11.67 N · m), while isometric torque was significantly less than at all other speeds (men: 98.66±28.0 N · m; women: 45.25±11.15 N · m). A 2×5 (sex×velocity) mixed-factor repeated-measures ANOVA was used to assess peak eccentric elbow flexor power. There were significant main effects for sex and velocity. Pairwise comparisons demonstrated that values for men were significantly higher than those for women at all speeds. Pairwise comparisons for velocity indicated that peak eccentric power increased across all speeds from 1.04 rad · s?1 (men: 110.44±32.56 W; women 54.36±13.05 W) to 5.23 rad · s?1 (men: 569.46±149.73 W; women: 279.10±61.10 W). These results demonstrate that an increase in velocity had little or no effect on eccentric elbow flexor torque, while eccentric elbow flexor power increased significantly with increases in velocity.  相似文献   

17.
An effective start enhances an athlete's chances of success in ski cross competitions. Accordingly, this study was designed to investigate the biomechanics of start techniques used by elite athletes and assess the influence of different start environments. Seven elite ski cross athletes performed starts indoors on a custom-built ramp; six of these also performed starts on an outdoor slope. Horizontal and vertical forces were measured by force transducers located in the handles of the start gate and a 12-camera motion capture system allowed monitoring of the sagittal knee, hip, shoulder, and elbow kinematics. The starting movement involved Pre, Pull, and Push phases. Significant differences between body sides were observed for peak vertical and resultant forces, resultant impulse, and peak angular velocity of the shoulder joint. Significantly lower peak vertical forces (44 N), higher resultant impulse (0.114 Ns/kg), and knee joint range of motion (12°) were observed indoors. Although movement in the ski cross start is generally symmetrical, asymmetric patterns of force were observed among the athletes. Two different movement strategies, i.e. pronounced hip extension or more accentuated elbow flexion, were utilised in the Pull phase. The patterns of force and movement during the indoor and outdoor starts were similar.  相似文献   

18.
The aim of this study was to investigate the influence of a suspended aid on the reaction forces during a basic skill on pommel horse. Twenty gymnasts performed three sets of 10 circles with and without a suspended aid on a pommel horse under which two force plates were set. The results confirmed that the suspended aid could reduce the magnitude of the pommel reaction forces during circles while maintaining the general loading pattern. On the left hand, the average and peak forces were attenuated to 0.59 body weight (BW) and 0.85 BW from 0.76 BW and 1.13 BW, respectively. The right hand experienced slightly larger forces with no-aid trials, but the asymmetry between the hands decreased with the aid. Despite a relatively large variability, all gymnasts experienced smaller impact peak forces with the aid. A suspended aid is most commonly used for a beginner gymnast as an introduction to pommel horse exercises. However, this study confirmed that it can also be useful for all levels of gymnasts who would like to practice pommel horse exercises with reduced pommel reaction forces for a purpose such as a progression for learning a new skill, control of training volume, or rehabilitation.  相似文献   

19.
The purpose of this study was to investigate joint kinetics of the throwing arms and role of trunk motion in skilled elementary school boys during an overarm distance throw. Throwing motions of 42 boys from second, fourth, and sixth grade were videotaped with three high-speed cameras operating at 300 fps. Seven skilled boys from each grade were selected on the basis of throwing distance for three-dimensional kinetic analysis. Joint forces, torques, and torque powers of the throwing arm joints were calculated from reconstructed three-dimensional coordinate data smoothed at cut-off frequencies of 10.5–15 Hz and by the inverse dynamics method. Throwing distance and ball velocity significantly increased with school grade. The angular velocity of elbow extension before ball release increased with school grade, although no significant increase between the grades was observed in peak extension torque of elbow joint. The joint torque power of shoulder internal/external rotation tended to increase with school grade. When teaching the overarm throw, elementary school teachers should observe large backward twisting of trunk during the striding phase and should keep in mind that young children, such as second graders (age 8 years), will be unable to effectively utilise shoulder external/internal rotation during the throwing phase.  相似文献   

20.
研究背景:现有研究文献尚无有关在着地过程中不同表面倾斜度和踝关节护具效应的运动学、动力学和地面反作用力的综合数据。通过对比25°斜面和平面的着地以及使用和不使用踝关节护具情况下来检测踝关节的生物力学特性。研究方法: 11名健康受试者[年龄:(24.6±3.5)岁,身高:(24.6±0.10)m,质量:(65.6±14.9)kg)参与本次研究。受试者在4个动态运动条件下各进行5五次实验:从0.45米高处垂直下落至25°的斜面(IS)或平面(FS)上,使用或不使用半刚性踝关节护具,同时采集三维运动学和测力台地面反作用力数据。利用2×2(表面X踝关节护具)的重复测量方差分析来评估选定的变量。研究结果:与平面着地相比,斜面着地造成较小的垂直和内侧地面反作用力峰值。研究还发现踝关节背曲运动范围、着地角度和背曲速度、最大外翻与跖曲角速度提高,但产生了更大内翻角度和运动范围、着地内翻速度和最大跖曲力矩。踝关节护具在斜面着地时减少了达到地面反作用力第二垂直峰值的时间、着地角度、背曲速度、最大外翻和跖曲速度,但增加了跖曲力矩的最大值。研究结论:斜面增加踝关节额状面的运动范围和踝关节负荷。但是,就斜面着地而言,踝关节护具对踝关节额状面的运动范围和踝关节负荷的影响是相当有限的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号