首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
公式“sin2α+cos2α=1”是高中三角函数问题中一个十分重要的公式,它是同角三角函数基本关系式之一,具有十分广泛的应用.在解决三角问题时,如能活用该公式,充分挖掘其潜在功能,往往可以推陈出新,给人以耳目一新的感觉.一、三角函数式的化简例1化简1-sin6α-cos6αsin2α-sin4α.解1-sin6α-cos6αsin2α-sin4α=1sin2αcos2α-sin2α+cos2αsin2αcos2α×(sin2α+cos2α)2-3sin2αcos2αsin2αcos2α=1-(1-3sin2αcos2α)sin2αcos2α=3.二、用公式求值例2已知sinθ+cosθ=15,θ(0,π),则cotθ=_____.解∵sin2θ+cos2θ=1,∴(sinθ+cos…  相似文献   

2.
一、构造函数例1设α、m为常数,θ是任意实数,求证:眼cos(θ+α)+mcosθ演2≤1+2mcosα+m2.证明构造函数y=f(θ)=1+2mcosα+m2-眼cos(θ+α)+mcosθ演2,则只需证明y≥0即可.f(θ)=sin2(θ+α)+2m眼cosα-cosθcos(θ+α)演+m2sin2θ.令sin(θ+α)=x,则得二次函数y=x2+2msinθ·x+m2sin2θ.由于Δ=4m2sin2θ-4m2sin2θ=0,且二次项系数为1,故y≥0,即原不等式成立.二、构造数列例2已知:sinφcosφ=60169,π4<φ<π2,求sinφ、cosφ的值.解由题意可知,sinφcosφ=(215姨13)2且sinφ>cosφ,构造等比数列cosφ,215姨13,sinφ.设sinφ=215姨13·q,c…  相似文献   

3.
配凑是解题过程中主要的转化手段,本文谈谈一些常用的配凑策略.1变“1”配凑例1把复数(1 sinθ-i cosθ)/(1 sinθ i cosθ)解 变1凑有:原式=((sinθ icosθ)(sinθ-i cosθ) sinθ-i cosθ)/(1 sinθ i cosθ)=(sinθ-icosθ)(sinθ icosθ 1)/(1 sonθ i cosθ)1 sin6 i cos6=(sinθ-icosθ)=cos(3π/2 θ ) i sin(3π/2 θ)2 已知 S一..86 i Sin6(oed=6M.),又1一Z”.llAfS_罗r_.__.一千六且加I一十个,arg.<十,求5的值.一1 z4——’一 3”一”—-2”“’””一(1993年全国高考试题)_….-.-,一,d矿一d)解 Y!ZI—1,二1—Z‘·Z’,人.一大于7卡夫””一‘“’””——-’””一ZZ (d zZ  相似文献   

4.
在允许取值范围内赋变量予特殊值,从而使问题获解的方法称为“特取法”。 [例1] 公式(Acos(θ+α)+Bsin(θ+β))/(A′(θ+α)+B′(cosθ+β))的值与θ无关,求证:AA′-BB′=(A′B-AB′)sin(α-β)。证:∵公式的值与θ无关,∴当θ分别取特值0,π/2时分式的值相同: (Acosα+Bsinβ)/(A′sinα+B′cosβ)=(-Asinα+Bsinβ)/(A′cosα-B′sinβ)去分母,整理即得。 AA′-BB′=(A′B-AB′)sin(α-β)。 [例2] 关于x的不等式acosx+bcos3x>1无解,证明:|b|≤1。(苏联15届奥林匹克赛题)  相似文献   

5.
“数学教学通讯”85年第5期张山同志的文“一个公式的巧用”读后很受启发,公式(a b c)(a~2 b~2 c~2-ab-bc-ca)=a~3 b~3 c~3-3abc在解题中巧用之处不少。今就这个公式在三角恒等式的证明中巧用的一角补充几个例题,使该文更有说服力。例1.已知sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin~3α sin~3β sin~3γ=3sinαsinβsinγ (2)cos~3α cos~3β cos~3γ=3cosαcosβcosγ证明:当a b c=0时,a~3 b~3 c~3=3abc令α=siaα,b=sinβ,c=sinγ,则sin~3α sin~3β sin~3γ=3sinαsinβsinγ。令a=cosα,b=cosβ,c=cosγ,则cos~3α cos~3β cos~3γ=3cosαcosβcosγ。利用例1的结论又得一题: 例2.已知:sinα sinβ sinγ=0, cosα cosβ cosγ=0 求证:(1)sin3α sin3β sin3γ  相似文献   

6.
解数学题,学生是多么期盼掌握一些“战无不胜”的技法。本文联用sin~2θ+cos~2θ=1与二维柯西不等式解题,其构思别致,变换灵巧,可谓学生所盼的“阳春白雪”。二维柯西不等式是:ac+bd≤(a~2+b~2)~(1/2)·(c~2+d~2)~(1/2),a、b、c、d∈R当且仅当a/c=b/d时,等式成立。(现行高中《代数》课本下册P.14)。一求值(或证明条件不等式) 例1 若α、β∈(0,π),且cosα+cosβ-cos(α+β)=3/2,求α、β。解:已知即为(1-cosα)cosβ+sinα·sinβ+cosα=3/2,于是:(cos~2β+sin~2;xx2)[1-cosα)~2+sin~α]≥[(1-cosα)cosβ+sinα·sinβ]~2=(3/2-cosα)~2即(2cosα-1)~2≤0,cosα=1/2,α=π/3,同理知β=π/3。(α、β∈(0,π)) 例2 已知msinθ-ncosθ=(m~2+n~2)~(1/2) (1)sin~2θ/α~2+cos~2θ/b~2=1/(m~2+n~2) (2)  相似文献   

7.
一、求角的范围例1若sinθ cosθ >0,则θ在()A.第一、二象限B.第一、三象限C.第一、四象限D.第二、四象限解∵sinθcosθ>0,∴sinθcosθsin2θ+cos2θ>0,∴tanθtan2θ+1>0,∴tanθ >0.选B.二、求值例2已知tan(π4+α)=2,求12sinαcosα+cos2α的值.解∵tan(α +π 4)=2,∴1+tanα1-tanα =2,tanα=1 3.∴ 12sinα cosα +cos2α=sin2α +cos2α2sinα cosα +cos2α=tan2α +12tanα +1=2 3.例3已知6sin2α+sinαcosα-2cos2α=0,α 缀[π2,π],求sin(2α+π3)的值.解显然cosα≠0,∴原条件可化为6tan2α+tanα-2=0,解得tanα=-2…  相似文献   

8.
“数”与“形”是数学研究的两大对象,在数学解题中以“形”研究“数”,会使问题直观形象,解法灵活简便,因此在解某些代数问题时,可依据题目的特征,构造出一些简单的几何图形,把所求的问题转化为几何问题,然后运用几何等知识去解决所求问题.笔者将对某些代数题构造几何图形妙解进行归类分析。 1 构造单位圆解三角题 例1 已知cosα cosβ-cos(α β)=3/2,α,β∈(0,π),求α,β的值. 解 由cosα cosβ-cos(α β)号得cosα cosβ-cosαcosβ sinαSinβ-3/2=0. (1-cosβ)cosα sinβsinα cosβ-3/2=0.(1)  相似文献   

9.
一、“给值求值”时将“待求角”用“条件角”表示例1 已知cos(α-β)=-4/5,cos(α+β)=4/5,且α-β∈(π/2,π),α+β∈(3π/1,2π),求cos2α. 解:由已知求得sin(α-β)=3/5,sin(α+β)=-3/5.又2α=(α-β)+(α+β),所以cos2α=cos(α-β)cos(α+β)-sin(α-β)sin(α+β)·代入已知数据得cos2α=-7/25. 练一练已知sin(π/4-α)=5/13(0<α<π/4),求cos2α/(?)的值.  相似文献   

10.
三角函数是高中数学的重要组成部分,其中许多问题的解决均涉及到基本能力的考查,大家在解题时,往往只知道套用一系列公式,因而计算烦琐,思想方法单一而且死板.其实这种现象是对基本数学思想把握不够造成的.在三角函数中,若使用方程(函数)思想解决求值、证明及研究三角函数性质等问题,会收到事半功倍的效果.本文列举几例,供同学们参考.例1已知sin(α+β)=12,sin(α-β)=13,求tanαcotβ的值.分析:先“切化弦”,得tanαcotβ=csionsααcsoinsββ,构造关于sinαcosβ、cosαsinβ的方程组,整体求值.解:由sin(α+β)=12,得sinαcosβ+cosαsin…  相似文献   

11.
通过对三角问题结构的分析,合理引入参数,借助参数架起已知通向未知的桥梁,这样往往可以使问题得以方便简捷地解决,请看下面的例子. 一、整体设参 例 1 已知 3sinα+cosα=2,求(sinα-cosα+1)/(sinα+cosα+1)的值.解:设(sinα-cosα+1)/(sinα+cosα+1)=k,则(1-k)sinα-(1-k)cosα=k-1,与3sinα+cosα=2联立,可求得sinα=(3k+1)/(2k+4),cosα=(5-5k)/(2k+4)(k≠-2).  相似文献   

12.
数学公式的记忆和应用,是学习和应用数学知识的一个重要环节。如何采用科学方法,达到理想的效果,是一个重要问题。本文谈一下三角公式中的和差化积与积化和差公式的应用方法。 在三角函数的加法定理及其推论中,有一组基本公式,即 sin(α β)=sinαcosβ cosαsinβ (1) sin(α-β)=sinαcosβ-cosαsinβ (2) cos(α β)=cosαcosβ-sinαsinβ (3) cos(α-β)=cosαcosβ sinαsinβ (4)在这四个公式的基础上,便能推出一组二倍  相似文献   

13.
错在哪里?     
一、广西东兰中学宋全宁来稿题:设方程x~2-2mx+m+2=0有两个实根,且分别为某直角三角形两锐角正弦的四倍,求m的值。解设直角三角形两锐角分别认α、β,则方程之二根为4sinα和4sinβ=4sin(90°-α)=4cosα,分别代入方程,得 16sin~2α-8msinα+m+2=0和16cosα~2-8mcosα+m+2=0 ∴m=(16sin~2α+2)/(8sinα-1)和m=(16cos~2α+2)/(8cosα-1) 即(16sin~2α+2)/(8sinα-1)=(16cos~2α+2)/(8cosα-1)解得锐角α=45°  相似文献   

14.
利用配对法 巧解高考题   总被引:1,自引:0,他引:1  
研究高考试题的解法,对高考复习具有重要的意义,本文采取配对的方法,可以获得一些高考题的巧解。下面举例说明配对法在解高考题中的应用。 一、和式配对 例1 sin20°cos70° sin10°sin50°的值是( ). A.1/4 B.3~(1/2)/2 C.1/2 D.3~(1/2)/4 (1993年全国高考理科试题) 分析:本题原型见高中《代数(必修)》上册P.190,3(3)题。根据该题的特点,可以利用和差角公式sin(α±β)=Sinαcosβ±cosαsinβ和cos(α±β)=cosαcosβ于sinαsinβ配对解之。 解:设a=sin20°cos70° sin10°sin50°, b=cos20°sin70° com10°cos50°. 则 a b=sin90° cos40°=1 cos40°, ① b-a=sin50° cos60°=1/2 cos40°. ② 由①一②得 2a=1/2,即a=1/4.故选A.  相似文献   

15.
向量作为一种工具在解题中的应用极广,巧用公式a·b≤a·b解题,方法新颖、运算简捷.本文举例说明该公式的应用.1在求值中的应用例1若α,β∈(0,π),求满足等式cosα+cosβ-cos(α+β)=23的α,β的值.解原等式可化为(1-cosβ)cosα+sinβsinα=32-cosβ.构造向量a=(1-cosβ,sinβ),b=(cosα,sinα),则a·b=(1-cosβ)2+sin2β·cos2α+sin2α=2-2cosβ,a·b=(1-cosβ)cosα+sinβsinα=32-cosβ.因为(a·b)2≤a2b2,所以(23-cosβ)2≤2-2cosβ,即(cosβ-12)2≤0,所以cosβ=21,β=3π.又α,β地位相同,故α=3π,即α=β=3π.2在求最值和值域中的…  相似文献   

16.
利用构造几何图形来求解或证明代数、三角中的问题,不少期刊对此法都作了介绍,但大多数都是通过构造三角形、矩形或正方形来解(证)的。那么,能否构造梯形作为几何模型呢?答案是肯定的。一、构造梯形证明定理、公式例1 证明两角和的正弦函数的加法公式:设α和β均为锐角,求证:sin(α+β)=sinαcosβ+cosαsinβ。证明:如图1,构造一个直角梯形ACDE,使α和β均为锐角,并且使BB=BD=1,易知AE=sinα,AB=cosα,CD=sinβ,BC=cosβ,而  相似文献   

17.
三角函数中的公式特别多,选取不同的公式,解题的途径就会有很多.平面向量具有一套运算法则,它可把几何图形的性质转化为向量运算,变抽象的逻辑推理为具体的向量运算,实现“数与形”的结合.我们在做题的同时,力求从不同的途径获得多种解法,开拓思维,有利于深刻理解问题的本质.例1已知sin2θ=35,而且0<θ<4π,试求2cos2s2in2θ-θ+sinπ4θ-1的值.解法1:把cosθ-sinθ化成2cosθ+4π,由条件利用半角公式分别求出cosθ+4π和sinθ+4π的值.原式=cosθ-sinθ2sinθ+4π=2cosθ+4π2sinθ+4π=cosθ+4πsinθ+4π,由sin2θ=53,0<θ<4π,得cos2π+…  相似文献   

18.
设三面角的三个面角分别是α、β、γ,它们所对的二面角分别是A、B、C,则有 coasA=(cosα-cosβcosγ)/(sinβsinγ) cosB=(cosβ-cosαcosγ)/(sinαsinγ) cosC=(cosγ-cosα-cosβ)/(sinβsinα) 这是方竹荪老师在《三面角公式及其应用》一文(见《中学数学教学》1980年第4期)中所证明的一组公式。当A、B、C中有某一个角是直角时,例如当A=90°时,有 cosα=cosβcosγ①这个公式在现行统编中学数学课本高中第二册第五章复习题中,以一个习题方式出现(即题9)。利用公式①可以较简便地解决一类问题,现举几例如下。  相似文献   

19.
利用向量的内积证明关于二面角的公式cosθ=cosαcosβ+sinαsinβcosφ,进而利用该公式给出二面角的一个简便求法.  相似文献   

20.
繁多的三角函数公式中最基本的是正弦和余弦的加法定理:sin(α±β)=sinα·cosβ±cosα·sinβcos(α±β)=cosα·cosβ±sinα·sinβ为了便于记忆,上述公式可以概括成下面的口诀:“正弦交叉不变号,余弦变号不交叉”.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号