首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BackgroundIn industrial yeasts, selection and breeding for resistance to multiple stresses is a focus of current research. The objective of this study was to investigate the tolerance to multiple stresses of Saccharomyces cerevisiae obtained through an adaptive laboratory evolution strategy involving a repeated liquid nitrogen freeze–thaw process coupled with multi-stress shock selection. We also assessed the related resistance mechanisms and very high-gravity (VHG) bioethanol production of this strain.ResultsElite S. cerevisiae strain YF10-5, exhibiting improved VHG fermentation capacity and stress resistance to osmotic pressure and ethanol, was isolated following ten consecutive rounds of liquid nitrogen freeze–thaw treatment followed by plate screening under osmotic and ethanol stress. The ethanol yield of YF10-5 was 16% higher than that of the parent strain during 35% (w/v) glucose fermentation. Furthermore, there was upregulation of three genes (HSP26, HSP30, and HSP104) encoding heat-shock proteins involved in the stress response, one gene (TPS1) involved in the synthesis of trehalose, and three genes (ADH1, HXK1, and PFK1) involved in ethanol metabolism and intracellular trehalose accumulation in YF10-5 yeast cells, indicating increased stress tolerance and fermentative capacity. YF10-5 also showed excellent fermentation performance during the simultaneous saccharification and fermentation of VHG sweet potato mash, producing 13.40% (w/v) ethanol, which corresponded to 93.95% of the theoretical ethanol yield.ConclusionsA multiple-stress-tolerant yeast clone was obtained using adaptive evolution by a freeze–thaw method coupled with stress shock selection. The selected robust yeast strain exhibits potential for bioethanol production through VHG fermentation.How to cite: Zhang Q, Jin Y, Fang Y, et al. Adaptive evolution and selection of stress-resistant Saccharomyces cerevisiae for very high gravity bioethanol fermentation. Electron J Biotechnol 2019;41. https://doi.org/10.1016/j.ejbt.2019.06.003  相似文献   

2.
BackgroundThe selection of new yeast strains could lead to improvements in bioethanol production. Here, we have studied the fermentative capacity of different auxotrophic mutants of Saccharomyces cerevisiae, which are routinely used as hosts for the production of heterologous proteins. It has recently been found that these strains exhibit physiological alterations and peculiar sensitivities with respect to the parental prototrophic strains from which they derive. In this work the performance of auxotrophic S. cerevisiae CEN.PK strains was compared to the corresponding prototrophic strain, to S. cerevisiae T5bV, a strain isolated from grape must and to another auxotrophic strain, S. cerevisiae BY4741.ResultsThe results indicate that the fermentative capacity of strains grown in 2% glucose was similar in all the strains tested. However, in 15% initial glucose, the auxotrophic strains exhibited a more than doubled ethanol yield on biomass (10 g g- 1dw) compared to the prototrophic strains (less than 5 g g- 1dw). Other tests have also evidenced that in medium depletion conditions, ethanol production continues after growth arrest.ConclusionsThe results highlight the capacity of auxotrophic yeast strains to produce ethanol per mass unit, in a higher amount with respect to the prototrophic ones. This leads to potential applications for auxotrophic strains of S. cerevisiae in the production of ethanol in both homogeneous and heterogeneous phases (immobilized systems). The higher ethanol yield on biomass would be advantageous in immobilized cell systems, as a reduced yeast biomass could greatly reduce the mass transfer limitations through the immobilization matrix.  相似文献   

3.
BackgroundFermentation strategies for bioethanol production that use flocculating Saccharomyces cerevisiae yeast need to account for the mechanism by which inhibitory compounds, generated in the hydrolysis of lignocellulosic materials, are tolerated and detoxified by a yeast floc.ResultsDiffusion coefficients and first-order kinetic bioconversion rate coefficients were measured for three fermentation inhibitory compounds (furfural, hydroxymethylfurfural, and vanillin) in self-aggregated flocs of S. cerevisiae NRRL Y-265. Thièle-type moduli and internal effectiveness factors were obtained by simulating a simple steady-state spherical floc model.ConclusionsThe obtained values for the Thiéle moduli and internal effectiveness factors showed that the bioconversion rate of the inhibitory compounds is the dominant phenomenon over mass transfer inside the flocs.How to cite: Landaeta R, Acevedo F, Aroca G. Effective diffusion coefficients and bioconversion rates of inhibitory compounds in flocs of Saccharomyces cerevisiae. Electron J Biotechnol 2019;42. https://doi.org/10.1016/j.rjbt.2019.08.001  相似文献   

4.
BackgroundOleaginous yeasts can be grown on different carbon sources, including lignocellulosic hydrolysate containing a mixture of glucose and xylose. However, not all yeast strains can utilize both the sugars for lipogenesis. Therefore, in this study, efforts were made to isolate dual sugar-utilizing oleaginous yeasts from different sources.ResultsA total of eleven isolates were obtained, which were screened for their ability to utilize various carbohydrates for lipogenesis. One promising yeast isolate Trichosporon mycotoxinivorans S2 was selected based on its capability to use a mixture of glucose and xylose and produce 44.86 ± 4.03% lipids, as well as its tolerance to fermentation inhibitors. In order to identify an inexpensive source of sugars, nondetoxified paddy straw hydrolysate (saccharified with cellulase), supplemented with 0.05% yeast extract, 0.18% peptone, and 0.04% MgSO4 was used for growth of the yeast, resulting in a yield of 5.17 g L−1 lipids with conversion productivity of 0.06 g L−1 h−1. Optimization of the levels of yeast extract, peptone, and MgSO4 for maximizing lipid production using Box–Behnken design led to an increase in lipid yield by 41.59%. FAME analysis of single cell oil revealed oleic acid (30.84%), palmitic acid (18.28%), and stearic acid (17.64%) as the major fatty acids.ConclusionThe fatty acid profile illustrates the potential of T. mycotoxinivorans S2 to produce single cell oil as a feedstock for biodiesel. Therefore, the present study also indicated the potential of selected yeast to develop a zero-waste process for the complete valorization of paddy straw hydrolysate without detoxification.How to cite: Sagia S, Sharma A, Singh S, et al. Single cell oil production by a novel yeast Trichosporon mycotoxinivorans for complete and ecofriendly valorization of paddy straw. Electronic Journal of Biotechnology 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.009.  相似文献   

5.
BackgroundFermentation process development has been very important for efficient ethanol production. Improvement of ethanol production efficiency from sweet sorghum juice (SSJ) under normal gravity (NG, 160 g/L of sugar), high gravity (HG, 200 and 240 g/L of sugar) and very high gravity (VHG, 280 and 320 g/L of sugar) conditions by nutrient supplementation and alternative feeding regimes (batch and fed-batch systems) was investigated using a highly ethanol-tolerant strain, Saccharomyces cerevisiae NP01.ResultsIn the batch fermentations without yeast extract, HG fermentation at 200 g/L of sugar showed the highest ethanol concentration (PE, 90.0 g/L) and ethanol productivity (QE, 1.25 g/L·h). With yeast extract supplementation (9 g/L), the ethanol production efficiency increased at all sugar concentrations. The highest PE (112.5 g/L) and QE (1.56 g/L·h) were observed with the VHG fermentation at 280 g/L of sugar. In the fed-batch fermentations, two feeding regimes, i.e., stepwise and continuous feedings, were studied at sugar concentrations of 280 g/L. Continuous feeding gave better results with the highest PE and QE of 112.9 g/L and 2.35 g/L·h, respectively, at a feeding time of 9 h and feeding rate of 40 g sugar/h.ConclusionsIn the batch fermentation, nitrogen supplementation resulted in 4 to 32 g/L increases in ethanol production, depending on the initial sugar level in the SSJ. Under the VHG condition, with sufficient nitrogen, the fed-batch fermentation with continuous feeding resulted in a similar PE and increased QP by 51% compared to those in the batch fermentation.  相似文献   

6.
BackgroundEnteric red mouth disease and Saprolegniasis, which are caused by the bacteria Yersinia ruckeri and the oomycete Saprolegnia parasitica, respectively, are important illnesses that affect salmonid farming. Sanitary problems in farms are addressed by the prevention of disease outbreaks or by the treatment of diseases with chemicals. Environmental and governmental restrictions, toxicity and high treatment costs limit the use of drugs. Marine organisms, such as algae, sponges and corals, have developed an antimicrobial defense strategy based on the production of bioactive metabolites. Among these organisms, seaweeds offer a particularly rich source of potential new drugs. Hence, many pharmacologically active substances have been isolated from seaweeds. In the Ceramium genus, Ceramium rubrum has been emphasized by several authors for its antimicrobial properties. Based on this background, the present study focused on the antimicrobial activity of a lipophilic extract of C. rubrum on Y. ruckeri and S. parasitica.ResultsThe alga, collected from the Pacific coast of Chile, underwent an ethanol extraction, and the concentrated extract was partitioned between water and dichloromethane. From the dichloromethane extract, fatty acids, fatty acid esters, one hydrocarbon and phytol were identified by Gas Chromatography–Mass Spectrometry (GC/MS) analysis. The antimicrobial study showed that the whole extract was more active than the individual components, which suggests a strong synergistic effect among the components.ConclusionsThese results may constitute a basis for promising future applied research that could investigate the use of C. rubrum seaweed as a source of antimicrobial compounds against fish pathogens.  相似文献   

7.
The capability of the AC dielectrophoresis (DEP) for on-chip capture and chaining of microalgae suspended in freshwaters was evaluated. The effects of freshwater composition as well as the electric field voltage, frequency, and duration, on the dielectrophoretic response of microalga Chlamydomonas reinhardtii were characterized systematically. Highest efficiency of cell alignment in one-dimensional arrays, determined by the percentage of cells in chain and the chain length, was obtained at AC-field of 20 V mm−1 and 1 kHz applied for 600 s. The DEP response and cell alignment of C. reinhardtii in water sampled from lake, pond, and river, as well as model media were affected by the chemical composition of the media. In the model media, the efficiency of DEP chaining was negatively correlated to the conductivity of the cell suspensions, being higher in suspensions with low conductivity. The cells suspended in freshwaters, however, showed anomalously high chaining at long exposure times. High concentrations of nitrate and dissolved organic matter decrease cell chaining efficiency, while phosphate and citrate concentrations increase it and favor formation of longer chains. Importantly, the application of AC-field had no effect on algal autofluorescence, cell membrane damage, or oxidative stress damages in C. reinhardtii.  相似文献   

8.
BackgroundCultivation of algae for conversion to biofuels has gained global interest. Outdoor raceway cultivation is preferred because of its lower capital and operating costs. A major disadvantage of outdoor cultivation is susceptibility of algal crops to attack by predatory rotifers. In order to quantify the impact of rotifer attack on different species of algae, we evaluated the growth of eleven microalgal species over a 21-d period after being infected by the predatory rotifer Brachionus rubens.ResultsOf the eleven species, Chlorella sorokiniana was the most susceptible with rapid decline in algal growth concomitant with increase in rotifer population growth (3.82/d). In contrast, Synechococcus elongatus and Scenedesmus dimorphus were both resistant to the rotifer and suppressed rotifer growth (-0.06/d). An index of algal species susceptibility to be consumed by the rotifer was generated with C. sorokiniana as the baseline (index = 1.000) indicating most susceptible among species tested. Other species' susceptibilities are indicated in parenthesis as follows: Monoraphidium spp. (0.997), Chlamydomonas globosa (0.827), Botryococcus braunii (0.740), Chlorella minutissima (0.570), Chlamydomonas augustae (0.530), Chlamydomonas yellowstonensis (0.500), Scenedesmus bijuga (0.420), and Haematococcus pluvialis (0.360). Two species, namely, S. dimorphus and S. elongatus were unique in that they exhibited an ability to suppress the growth of the rotifer as indicated by the decline in rotifer populations in their presence.ConclusionsVariations in susceptibility of algal species to rotifer predation could be a result of their individual morphology, cell walls structure, or the biochemical composition of individual species.  相似文献   

9.
BackgroundBiologically active peptides produced from fish wastes are gaining attention because their health benefits. Proteases produced by halophilic microorganisms are considered as a source of active enzymes in high salt systems like fish residues. Hence, the aim of this study was the bioprospection of halophilic microorganisms for the production of proteases to prove their application for peptide production.ResultsHalophilic microorganisms were isolated from saline soils of Mexico and Bolivia. An enzymatic screening was carried out for the detection of lipases, esterases, pHB depolymerases, chitinases, and proteases. Most of the strains were able to produce lipases, esterases, and proteases, and larger hydrolysis halos were detected for protease activity. Halobacillus andaensis was selected to be studied for proteolytic activity production; the microorganism was able to grow on gelatin, yeast extract, skim milk, casein, peptone, fish muscle (Cyprinus carpio), and soy flour as protein sources, and among these sources, fish muscle protein was the best inducer of proteolytic activity, achieving a protease production of 571 U/mL. The extracellular protease was active at 50°C, pH 8, and 1.4 M NaCl and was inhibited by phenylmethylsulfonyl fluoride. The proteolytic activity of H. andaensis was used to hydrolyze fish muscle protein for peptide production. The peptides obtained showed a MW of 5.3 kDa and a radical scavenging ability of 10 to 30% on 2,2-diphenyl-1-picrylhydrazyl and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and a ferric reducing ability of plasma.ConclusionThe use of noncommercial extracellular protease produced by H. andaensis for biologically active peptide production using fish muscle as the protein source presents a great opportunity for high-value peptide production.How to cite: Delgado-García M, Flores-Gallegos AC, Kirchmayr M, et al. Bioprospection of proteases from Halobacillus andaensis for bioactive peptide production from fish muscle protein. Electron J Biotechnol 2019;39. https://doi.org/10.1016/j.ejbt.2019.03.001.  相似文献   

10.
BackgroundThe potential waste canola oil-degrading ability of the cold-adapted Antarctic bacterial strain Rhodococcus sp. AQ5-07 was evaluated. Globally, increasing waste from food industries generates serious anthropogenic environmental risks that can threaten terrestrial and aquatic organisms and communities. The removal of oils such as canola oil from the environment and wastewater using biological approaches is desirable as the thermal process of oil degradation is expensive and ineffective.ResultsRhodococcus sp. AQ5-07 was found to have high canola oil-degrading ability. Physico-cultural conditions influencing its activity were studied using one-factor-at-a-time (OFAT) and statistical optimisation approaches. Considerable degradation (78.60%) of 3% oil was achieved by this bacterium when incubated with 1.0 g/L ammonium sulphate, 0.3 g/L yeast extract, pH 7.5 and 10% inoculum at 10°C over a 72-h incubation period. Optimisation of the medium conditions using response surface methodology (RSM) resulted in a 9.01% increase in oil degradation (87.61%) when supplemented with 3.5% canola oil, 1.05 g/L ammonium sulphate, 0.28g/L yeast extract, pH 7.5 and 10% inoculum at 12.5°C over the same incubation period. The bacterium was able to tolerate an oil concentration of up to 4.0%, after which decreased bacterial growth and oil degradation were observed.ConclusionsThese features make this strain worthy of examination for practical bioremediation of lipid-rich contaminated sites. This is the first report of any waste catering oil degradation by bacteria originating from Antarctica.How to cite: Ibrahim S, Zahri KNM, Convey P, et al. Optimisation of biodegradation conditions for waste canola oil by cold-adapted Rhodococcus sp. AQ5-07 from Antarctica. Electron J Biotechnol 2020;48. https://doi.org/10.1016/j.ejbt.2020.07.005  相似文献   

11.
BackgroundPyruvic acid (PA), a vital α-oxocarboxylic acid, plays an important role in energy and carbon metabolism. The oleaginous yeast Yarrowia lipolytica (Y. lipolytica) has considerable potential for the production of PA. An increased NaCl concentration reportedly increases the biomass and PA yield of Y. lipolytica.ResultsTo increase the yield of PA, the NaCl-tolerant Y. lipolytica A4 mutant was produced using the atmospheric and room temperature plasma method of mutation. The A4 mutant showed growth on medium containing 160 g/L NaCl. The PA yield of the A4 mutant reached 97.2 g/L at 120 h (0.795 g/g glycerol) in a 20-L fermenter with glycerol as the sole carbon source, which was 28.9% higher than that of the parental strain.ConclusionThe PA yield from Y. lipolytica can be improved by increasing its NaCl tolerance.How to cite: Yuan W, Lin X, Zhong S, et al. Enhanced pyruvic acid yield in an osmotic stress-resistant mutant of Yarrowia lipolytica. Electron J Biotechnol 2020;44. https://doi.org/10.1016/j.ejbt.2020.01.002.  相似文献   

12.
Heavy metals are natural elements in the Earth’s crust that can enter human food through industrial or agricultural processing, in the form of fertilizers and pesticides. These elements are not biodegradable. Some heavy metals are known as pollutants and are toxic, and their bioaccumulation in plant and animal tissues can cause undesirable effects for humans; therefore, their amount in water and food should always be under control. The aim of this study is to investigate the conditions for the bioremediation of heavy metals in foods. Various physical, chemical, and biological methods have been used to reduce the heavy metal content in the environment. During the last decades, bioremediation methods using plants and microorganisms have created interest to researchers for their advantages such as being more specific and environmentally friendly. The main pollutant elements in foods and beverages are lead, cadmium, arsenic, and mercury, which have their own permissible limits. Among the microorganisms that are capable of bioremediation of heavy metals, Saccharomyces cerevisiae is an interesting choice for its special characteristics and being safe for humans, which make it quite common and useful in the food industry. Its mass production as the byproduct of the fermentation industry and the low cost of culture media are the other advantages. The ability of this yeast to remove an individual separated element has also been widely investigated. In countries with high heavy metal pollution in wheat, the use of S. cerevisiae is a native solution for overcoming the problem of solution.This article summarizes the main conditions for heavy metal absorption by S. cerevisiae.How to cite: Massoud R, Hadiani MR, Khosravi Darani K, et al. Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electron J Biotechnol 2019;37. https://doi.org/10.1016/j.ejbt.2018.11.003.  相似文献   

13.
BackgroundEthanol concentration (PE), ethanol productivity (QP) and sugar consumption (SC) are important values in industrial ethanol production. In this study, initial sugar and nitrogen (urea) concentrations in sweet sorghum stem juice (SSJ) were optimized for high PE (≥ 10%, v/v), QP, (≥ 2.5 g/L·h) and SC (≥ 90%) by Saccharomyces cerevisiae SSJKKU01. Then, repeated-batch fermentations under normal gravity (NG) and high gravity (HG) conditions were studied.ResultsThe initial sugar at 208 g/L and urea at 2.75 g/L were the optimum values to meet the criteria. At the initial yeast cell concentration of ~ 1 × 108 cells/mL, the PE, QP and SC were 97.06 g/L, 3.24 g/L·h and 95.43%, respectively. Repeated-batch fermentations showed that the ethanol production efficiency of eight successive cycles with and without aeration were not significantly different when the initial sugar of cycles 2 to 8 was under NG conditions (~ 140 g/L). Positive effects of aeration were observed when the initial sugar from cycle 2 was under HG conditions (180–200 g/L). The PE and QP under no aeration were consecutively lower from cycle 1 to cycle 6. Additionally, aeration affected ergosterol formation in yeast cell membrane at high ethanol concentrations, whereas trehalose content under all conditions was not different.ConclusionInitial sugar, sufficient nitrogen and appropriated aeration are necessary for promoting yeast growth and ethanol fermentation. The SSJ was successfully used as an ethanol production medium for a high level of ethanol production. Aeration was not essential for repeated-batch fermentation under NG conditions, but it was beneficial under HG conditions.How to cite: Sriputorn B, Laopaiboon P, Phukoetphim N, et al. Enhancement of ethanol production efficiency in repeated-batch fermentation from sweet sorghum stem juice: Effect of initial sugar, nitrogen and aeration. Electron J Biotechnol 2020;46. https://doi.org/10.1016/j.ejbt.2020.06.001  相似文献   

14.
BackgroundLarge amounts of β-alanine are required in fine chemical and pharmaceutical synthesis and other fields. Profitable and green methods are required for the industrial production of β-alanine.ResultsReplacing endogenous panD of Escherichia coli with heterologous CgpanD from Corynebacterium glutamicum enabled β-alanine synthesis of 0.67 g/L by strain B0016-082BB. Overexpressing CgpanD on both plasmids and chromosomes to enhance the rate-limiting step improved the β-alanine titer to 4.25 g/L in strain B0016-083BB/pPL451-panD with a slighter metabolic burden. Growth factors were introduced by addition of yeast extract, and 6.65 g/L of β-alanine was synthesized by strain B0016-083BB/pPL451-panD in the M9-3Y medium.ConclusionsEnhancement of the rate-limiting steps in the β-alanine biosynthetic pathway, recruitment of the temperature-sensitive inducible pL promoter, and optimization of the fermentation process could efficiently increase β-alanine production in E. coli.How to cite: Xua J, Zhua Y, Zhou Z. Systematic engineering of the rate-limiting step of β-alanine biosynthesis in Escherichia col. Electron J Biotechnol 2021;51. https://doi.org/10.1016/j.ejbt.2021.03.002.  相似文献   

15.
BackgroundThe roots of chicory and the tubers of Jerusalem artichoke are used for the production of inulin. However, a quality of tubers and roots, i.e. the content of inulin, monosaccarides and disaccharides, depends on the activity of enzymes implicated in the metabolism of inulin. The knowledge on the changes of activities of inulin synthesizing and degrading enzymes is limited during plant sprouting, growth and dormancy. It happens due to complicated measurements of the product of enzymatic reaction in the presence of crude plant extract. Fructan exohydrolase (β-d-fructan fructohydrolase, FEH, EC 3.2.1.80) is an enzyme responsible for the hydrolysis of fructans in plants. For fructose as the reaction product measurement, a high-performance liquid chromatography is usually used. The aim of the study was to choose a simple and suitable method for FEH activity determination and the measurement of fructose in the presence of plant extracts.ResultsTwo chemical methods, i.e. copper(II)–neocuproine and 3,5-dinitrosalicylic acid, and the enzymatic one based on the reactions catalyzed by hexokinase, phosphoglucose isomerase and glucose-6-phosphate dehydrogenase were used. Enzymatic method was found to be suitable for FEH activity determination in plant extracts, and on the contrary to chemical methods no interference effects of compounds from crude plant extracts were observed.ConclusionEnzymatic method is applicable for the routine analysis and will allow performing the investigations without special equipment on the inulin degrading enzyme in biotechnologically important crops.  相似文献   

16.
BackgroundThe alga Laminaria japonica is the most economically important brown seaweed cultured in China, which is used as food and aquatic animal feedstuff. However, the use of L. japonica as a feedstuff in Apostichopus japonicas farming is not ideal because A. japonicas does not produce enough enzyme activity for degrading the large amount of algin present in L. japonica. In this study, semi solid fermentation of the L. japonica feedstuff employing a Bacillus strain as the microbe was used to as a mean to degrade the algin content in L. japonica feedstuff.ResultsThe Bacillus strain, Bacillus amyloliquefaciens WB1, was isolated by virtue of its ability to utilize sodium alginate as the sole carbon source. Eight factors affecting growth and algin-degrading capacity of WB1 were investigated. The results of Plackett–Burman design indicated that fermentation time, beef extract, and solvent to solid ratio were the significant parameters. Furthermore, the mutual interaction between the solvent to solid ratio and beef extract concentration was more significant than the other pairs of parameters on algin degradation. Optimal values obtained from Central-Composite Design were 113.94 h for fermentation time, 0.3% (w/v) beef extract and 44.87 (v/w) ratio of solvent to feedstuff. Under optimal conditions, 56.88% of the algin was degraded when a 50-fold scale-up fermentation was carried out, using a 5-L fermenter.ConclusionsThis study provides an alternative and economical way to reduce the algin content in L. japonica through degradation by WB1, making it a promising potential source of feed for cultured L. japonica.  相似文献   

17.
BackgroundCurrently, microbial fermentation method has become the research hotspot for acetoin production. In our previous work, an acetoin-producing strain, Bacillus subtilis SF4-3, was isolated from Japanese traditional fermented food natto. However, its conversion of glucose to acetoin was relatively low. In order to achieve a high-efficient accumulation of acetoin in B. subtilis SF4-3, main medium components and fermentation conditions were evaluated in this work.ResultsThe by-products analysis showed that there existed reversible transformation between acetoin and 2,3-butanediol that was strictly responsible for acetoin production in B. subtilis SF4-3. The carbon sources, nitrogen sources and agitation speed were determined to play crucial role in the acetoin production. The optimal media (glucose·H2O 150 g/L, yeast extract 10 g/L, corn steep dry 5 g/L, urea 2 g/L, K2HPO4 0.5 g/L, MgSO4 0.5 g/L) were obtained. Furthermore, the low agitation speed of 300 r/min was found to be beneficial to the reversible transformation of 2,3-butanediol for acetoin production in B. subtilis SF4-3. Eventually, 48.9 g/L of acetoin and 5.5 g/L of 2,3-butanediol were obtained in a 5-L fermenter, and the specific production of acetoin was 39.12% (g/g), which accounted for 79.90% of the theoretical conversion.ConclusionsThe results indicated acetoin production of B. subtilis SF4-3 was closely related to the medium components and dissolved oxygen concentrations. It also provided a method for acetoin production via the reversible transformation of acetoin and 2,3-butanediol.  相似文献   

18.
BackgroundMicrobial oils produced by diverse microorganisms are being considered as alternative sources of triglycerides for biodiesel production. However, the standalone production of biodiesel from microorganisms is not currently economically feasible. In case of yeasts, the use of low-value nutrient sources in microbial production and the implementation of cost-efficient downstream processes could reduce costs and make microbial lipids competitive with other commodity-type oils in biodiesel production. Industrial biodiesel synthesis from oleaginous seeds is currently based on a multistep process. However, a simple process called in situ transesterification (ISTE), which takes place within the biomass without a previous lipid extraction step, is receiving increasing interest. In this work, the optimal conditions for an ISTE process to obtain biodiesel from previously selected oleaginous yeast (Rhodotorula graminis S1/S2) were defined using the response surface methodology (RSM).ResultsUsing the RSM approach, the optimal conditions for the maximum yield with minimum reaction time included a methanol-to-biomass ratio of 60:1, 0.4 M H2SO4, and incubation at 70°C for 3 h. The optimized in situ process yield was significantly higher (123%) than that obtained with a two-step method in which fatty acids from saponifiable lipids were first extracted and then esterified with methanol. The composition of the fatty acid methyl ester mixture obtained from R. graminis S1/S2 by ISTE met Uruguayan standards for biodiesel.ConclusionThe characteristics achieved by the optimized method make microbial oil a potential alternative for biodiesel production from yeast at an industrial scale.How to cite: Martinez-Silveira A, Villarreal R, Garmendia G, et al. Process conditions for a rapid in situ transesterification for biodiesel production from oleaginous yeasts. Electron J Biotechnol 2018;37. https://doi.org/10.1016/j.ejbt.2018.11.006.  相似文献   

19.
BackgroundPlant tissue culture involves the use of explants obtained from plants to induce organogenesis with the help of plant growth regulators (PGRs). Micropropagation techniques provide a faster and economical solution to the limitations associated with traditional methods of plant cultivation. The present study focuses on the multiple shoot induction and proliferation of Ficus carica var. Black Jack. Factors that influence the growth of in vitro multiple shoots on the apical buds, which include growth media and PGRs, were investigated in this study. Different concentrations of cytokinins like 6-benzylaminopurine (BAP), Thidiazuron (TDZ), and Kinetin (Kin) were used on woody plant medium (WPM) for the optimization of media for multiple shoot induction and proliferation.ResultsApical buds of Ficus carica var. Black Jack growing in WPM supplemented with BAP produced the healthiest plantlets, with the highest number of multiple shoots. The most efficient medium composition which produced the highest number of multiple shoots (37.8) per growing explant was WPM supplemented with 20 µM BAP. Proliferated multiple shoots were efficiently rooted using WPM + 20 µM BAP + 8 µM indole-3-acetic acid (IAA). This optimized medium composition significantly enhanced the production of multiple, disease-free plantlets using single apical bud explants of Ficus carica var. Black Jack.ConclusionsIn the present study the observations indicate that WPM supplemented with 20 µM BAP is the best-suited medium for organogenesis and multiple shoot culture of Ficus carica var. Black Jack, and this technique can be potentially applied for commercialization of the plant.How to cite: Parab AR, Chew BL, Yeow LC, et al. Organogenesis on apical buds in common fig (Ficus carica) var. Black Jack. Electron J Biotechnol 2021;54. https://doi.org/10.1016/j.ejbt.2020.01.010  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号