首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
函数思想就是把字母看作变量,把代数式看作函数,利用函数的图象和性质、导数等工具去分析问题、转化问题,从而使问题得到解决. 方程思想就是分析数学问题中变量间的数量关系,建立方程或方程组,通过解方程或方程组,或运用方程的性质去分析、转化问题,使问题得到解决.方程思想与函数思想密切相关.对函数y=f(x),当y=0时,就转化为方程f(x)=0;也可以把函数y=f(x)看作二元方程y-f(x)=0.函数与方程的这种相互转化十分重要. 函数与方程思想,几乎渗透到高中数学的各个领域,在解题中应用非常广泛,也是历年高考的热点. 一.把代数式看作函数,利…  相似文献   

2.
函数的思想,是运用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系和构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题得到解决。方程的思想,就是分析数学问题中的变量间的等量关系,从而建立方程或方程组,或着构造方程,通过解方程(或解方程组),或者运用方程的性质去分析、转化问题,使问题得到解决。方程的思想与函数的思想密切相关。对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数看作二元方程,函数与方程的这种转化关系十分重要。一、运用函数与方程、不等式的相互转化的观点…  相似文献   

3.
通常函数与方程思想在解题中的应用主要表现在两个方面:许多有关方程的问题可以用函数的方法解决;反之,许多函数问题也可以用方程的方法来解决.一、解函数、方程问题解方程f(x)=0就是求函数f(x)当函数值为零时自变量x的值;求方程f(x)=g(x)的根或根的个数就是求函数y=f(x)与y=g(x)的图象的交点横坐标或交点个数.  相似文献   

4.
<正>对于函数y=f(x),我们把使f(x)=0的实数x叫做函数的零点.这样,函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴(直线y=0)交点的  相似文献   

5.
<正>一般地,使函数y=f(x)的值为0的实数x称为函数y=f(x)的零点.因此,函数y=f(x)的零点就是方程f(x)=0的实数根.从图象上看,函数y=f(x)的零点就是它的图象与x轴交点的横坐标.一般地,若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线且f(a)·f(b)<0,则函数y=f(x)在区间(a,b)上有零点.我们经常会遇到函数与方程的有关问题,下面我们看这样几个题目.  相似文献   

6.
数学思想是研究和解决数学问题和有关实际问题的基本指导思想.求解数学问题时,若能正确地运用数学思想,则可提高解题效率.本文举例介绍在求解三角问题时的常用数学思想.一、函数思想例1已知x3+sinx-2a=0,x∈[-π2,π2],4y3+sinycosy+a=0,y∈[-π4,π4],求sin(x+2y)的值.分析:从已知条件所具有的特征出发,可构造一个新的函数f(x)=x3+sinx,利用该函数的单调性,找出x与2y的关系,从而获得解答.解:令函数f(x)=x3+sinx,由x3+sinx-2a=0,得2a=x3+sinx=f(x).又由4y3+sinycosy+a=0,得2a=-8y3-2sinycosy=(-2y)3+sin(-2y)=f(-2y),∴f(x)=f(-2y),∵x,-2y…  相似文献   

7.
一、目标指引函数与方程是两个不同的概念,但它们之间有着密切的联系.方程f(x)=0的解就是函数y=f(x)的图像与x轴的交点的横坐标,函数y=f(x)也可以看作二元方程f(x)-y=0通过方程进行研究.函数思想就是要用运动变化的观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量  相似文献   

8.
<正>函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决;方程与函数是两个不同概念,但他们之间有着密切的联系.方程f(x)=0的解就是函数y=f(x)的图像与x轴的交点的横坐标,即函数f(x)的零点.若设函数F(x)=f(x)-g(x),则根据函数与方程的关系,可得到三个等价式:  相似文献   

9.
函数是中学数学的重要内容,函数的思想方法贯穿中学数学的始终.因此历年的高考试题,都贯穿着函数及其性质这条主线,是高考命题的一大热点.函数与方程密切相关,方程f(x)=0,就是函数y=f(x)的零点.方程f(x)=g(x)的解就是函数y=f(x)与y=g(x)的交点.问题 (2009年南京高考模拟题)  相似文献   

10.
我们知道,每一解析函数式,当把其中的变量看成未知数时,它就是方程;反之,每一方程,当把其中的未知数看成变量时,它就是函数或函数的特殊情形.方程 f(x)=0就可说是函数y=f(x)在 y=0时的情形.对于方程 f(x)=g(x)的解,可看成是函数 y_1=f(x)和函数 y_2=g(x)在 y_1=y_2时的 x 值.用研究函数的观点去研究方程,可使一些难题的解答具有直观性,方法别致、巧妙.  相似文献   

11.
<正>如果函数y=f(x)在x=a处的函数值等于零,即f(a)=0,则称a为函数y=f(x)的零点,因此函数y=f(x)的零点就是方程f(x)=0的根。函数的零点把函数和方程紧密地联系在一起。函数的零点是函数的一个重要性质,在分析解题思路、探究解题方法中发挥着重要作用。一、利用函数零点研究方程的根由于函数y=f(x)的零点就是方程f(x)=0的根,所以在研究方程的有关问题(比较方程根的大小、确定方程根的分布、证明根的存在性等)时,都可以将方程问题转化  相似文献   

12.
1 基础知识 1.1注意函数的零点与方程的根的关系 一般地,对于函数y=f(x)(x∈D)我们称方程f(x)=0的实数根x也叫做函数的零点,即函数的零点就是使函数值为零的自变量的值.求综合方程f(x)=g(x)的根或根的个数就是求函数y=f(x)-g(x)的零点.  相似文献   

13.
文[1]指出:解方程(不等式)的实质就是对方程两端同时施以各种运算,即等价变形,分离出一个变量,即解出一个未知数,在多元方程(不等式)中解出一个未知数就得显函数,如在F(x,y)=0中解出y就得显函数y=f(x),同样在不等式F(x,y)>0中解出y就得不等式y>f(x)(或y相似文献   

14.
一般情况下,若方程f(x,y)=0中含一个(或多个)参数,当x取某个常数x0时,y也对应一个与参数无关的常数y0,我们就说方程f(x,y)=0对应的曲线过定点坐标(x0,y0)。方程f(x,y)=0对应的曲线过定点问题的解决蕴含着化归、数形结合、函数与方程等重要的数学思想方法,因此,此类问题可以考查学生对知识的综合应用能力和思维创薪能力,且难度  相似文献   

15.
高中课本中导函数定义:如果函数y=f(x)在开区间(a,b)内的每点处都有导数,此时对于每一个x∈(a,b),都对应着一个确定的导数f(′x),从而构成一个新的函数f(′x),称这个函数f(′x)为函数y=f(x)在开区间内的导函数.f(′x)=y′=limΔx→0ΔyΔx=limΔx→0f(x Δx)-f(x)Δx.那么函数y  相似文献   

16.
函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,一直是高考的热点、重点内容.而和函数有必然联系的是方程,方程f(x)=0的解就是函数y=f(x)的图像与x轴的交点的横坐标,函数y=f(x)也可以看作二元方程f(x)-y=0的解,通过方程进行研究,要确定变化过程的某些量,往往要转化为求出这些量满足的方程,这就是方程的思想,方程思想是动中求静,研究运动中的等量关系.  相似文献   

17.
函数的零点是研究函数性质的一个方面,也是高考考查的热点,在近几年的高考中出现频率非常高.本文结合几道试题介绍几种函数零点的处理方法.1解方程(方程思想)我们把使得f(x)=0成立的实数x,叫作函数y=f(x)的零点.因此,函数的零点与方程有密切的联系.方程f(x)=0的解就是函数y=f(x)的零点(也是函数f(x)图象与x轴交点的横坐标);且方程f(x)=g(x)的解就是新函数y=f(x)-g(x)的零点,也是函数y=f(x)与函数y=g(x)的图象的交点的横坐标.因此我们可以研究方程或函数图象解决函数的零点问题.例1(2012年湖北理)函数f(x)=xcos x2在区间[0,4]上的零点个数为.  相似文献   

18.
陈一君 《成才之路》2012,(27):31-31
函数与方程的思想是高中数学的重要思想方法之一。函数的思想即将方程及不等式的问题转化为函数的问题,借助函数的图像及性质进一步解决问题;方程的思想是把y=f(x)函数看做方程f(x)-y=0的问题,利用方程进一步研究。  相似文献   

19.
<正>我们把形如y=f[f(x)]或y=f[g(x)]的一类函数称为嵌套函数,把含有嵌套函数的函数问题称为嵌套函数问题.嵌套函数问题有两类基本形式:1.“f[f (x)]”型这一类型是同一个函数f(x)自身嵌套问题,求解这一类型的策略是:首先将“内层函数”换元,即设f(x)=t,然后根据题设条件解出相应t的值或范围,最后利用函数f(x)或利用函数y=f(x)与y=t的图像关系解得问题.  相似文献   

20.
在数学解题中经常碰到有关恒成立问题 ,解决这类问题的方法尽管很多 ,但都离不开一些基本的数学思想 ,如化归思想、函数思想、方程思想等等 .笔者在平时的教学过程中对这类问题的解法作了一点归纳 ,供大家参考 .一、利用一次函数的性质对于一次函数 f(x) =kx +b,x∈ [m ,n] ,有f(x) >0恒成立 f(m) >0 ,f(n) >0 ;f(x) <0恒成立 f(m) <0 ,f(n) <0 .例 1  |p| <2 ,p∈R ,欲使不等式(log2 x) 2 +(p-2 )log2 x+1-p >0恒成立 ,求x的取值范围 .分析 若直接解关于log2 x的不等式 ,再由 p的取值范围求出x的取值范围 ,不仅化简过程十分繁杂 ,而…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号