首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
In this paper, an adaptive concave barrier function scheme coupled with the non-singular terminal sliding mode control technique is proposed for finite-time tracking control of the under-actuated nonlinear system in the existence of model uncertainty, external disturbance and input saturation. Firstly, the dynamical equation of under-actuated nonlinear n-order system is expressed under model uncertainty, external disturbance and input saturation. Secondly, for the improvement of stability performance of the system in the existence of input saturation, a compensation system is designed to overcome the constraint on the control input. Afterward, the tracking errors between actual states of the system and differentiable reference signals are defined and the sliding surface based on the defined tracking errors is presented. Then, for gaining the better transient and steady-state performance of the closed-loop system, the prescribed performance control scheme is adopted. Based on this method, the transformed prescribed form of the previous determined sliding surface is obtained to ensure that the sliding surface can reach to a predefined region. Afterward, for assurance of the finite-time reachability of transformed sliding surface, the nonsingular terminal sliding surface is recommended. In addition, for the compensation of the model uncertainty and external disturbance existed in the system, the adaptive-based concave barrier function technique is used to estimate the unknown bounds of uncertainty and exterior disturbance. Finally, for demonstration of the proposed control method, the simulations and experimental implementation are done on the air levitation system.  相似文献   

2.
Aiming at the problems of unstable batch control of key crystal quality parameters and susceptibility to batch-to-batch non-repetitive disturbances during repeated operation of single crystal furnaces, this paper proposes a data-driven iterative learning model predictive control method based on an adaptive iterative extended state observer (IESO) for designing melt temperature and crystal diameter learning controllers with disturbance suppression. By applying dynamic linearization techniques and model predictive control strategies along the iterative axis, an ILMPC scheme with disturbance compensation terms using only input and output data of the system is designed. Among them, adaptive IESO is used to estimate the disturbance compensation terms. Then, the theoretical analysis shows that the tracking error of the ILMPC scheme can converge to a bounded range as the number of iterations increases. The experimental results verify the effectiveness of the proposed control method, which not only ensures that the control system has learning ability, but also achieves stable and accurate control of crystal quality parameters.  相似文献   

3.
The attitude control problem of a rigid satellite with actuator failure uncertainties and external disturbance is addressed using adaptive control method. A discontinuous adaptive failure compensation controller, using unit quaternion and angular velocities feedback, is designed to accommodate the external disturbance and actuator failures which are uncertain in time instants, values and patterns. A common approximate function is used to avoid system chattering caused by such discontinuous control laws. The parameters of external disturbance and failure uncertainties are estimated directly by adaptive laws, and the desired stability and output tracking properties of the adaptive control system are analyzed. Finally, simulation results of a rigid satellite with six reaction wheels are presented to illustrate the performance of the proposed adaptive actuator failure compensation scheme.  相似文献   

4.
This paper addresses the problem of robust adaptive attitude tracking control for spacecraft with mismatched and matched uncertainties. The idea of disturbance estimation and compensation is introduced into the control design. First, finite-time disturbance observers are developed for different channels of spacecraft based on barrier functions for achieving finite-time asymptotic estimates of unknown bounded uncertainties in the system. Second, a class of prescribed performance functions is considered in the design of the barrier function. The spacecraft attitude adaptive tracking control strategy with finite-time convergence capability and prescribed performance is proposed based on the designed finite-time disturbance observers and barrier function. Finally, the theoretical findings are verified by numerical simulations and compared with the simulation results of existing methods.  相似文献   

5.
In this paper, two output feedback controllers are proposed for motion control of double-rod electro-hydraulic servo actuators with matched and mismatched disturbances rejection. All of them employ an linear extended state observer (LESO) to achieve real-time estimates of the unmeasured system states and matched disturbance, and a nonlinear disturbance observer (NDO) to estimate the largely unknown mismatched disturbance at the same time. Thus, the disturbances are compensated via their online estimates in a feedforward way when implementing the resulting control algorithms, respectively. Furthermore, a continuously differentiable friction model is employed to compensate the majority of nonlinear friction existing in the system and reduce the burden of the NDO. Specially, one of the proposed control schemes utilizes model-based compensation terms depending on the desired trajectory to be tracked instead of the estimated system states. By doing this, online computation burden can be reduced. The stability of the whole closed-loop system under each control scheme is guaranteed by theoretical analysis. Moreover, the applicability of each control scheme are validated by experiments in different working conditions.  相似文献   

6.
In this paper, a novel robust adaptive multistage anti-windup control strategy is developed for dynamic positioning ships in presence of input constraint, mismatched disturbance and external disturbance. Based on dynamic surface control technique, a composite control law, where both mismatched and matched disturbances are compensated, is established to stabilize the system without the requirement of solving any partial differential equations. In particularly, the mismatched disturbance caused by the model transformation is analyzed firstly and the better steady performance is achieved. In addition, a novel multistage anti-windup control based on anticipatory activation compensation is constructed to handle the input constraint while the transient performance is improved significantly. Moreover, the stability of the closed-loop system is proven via Lyapunov technique rigorously, and the tracking error can be forced into an arbitrarily small neighborhood around zero. Finally, simulations with comparisons demonstrate the effectiveness of the proposed method.  相似文献   

7.
Due to the extreme large flight scale of Hypersonic Vehicle (HSV), the system inevitably possesses strong nonlinearity, coupling, fast time-variability and is also sensitive to disturbance and fault. The method of external anti-windup system combined with the terminal sliding mode control law (TSMC) is presented for the nonlinear control problem under the restriction of control surfaces for HSV. It can realize the compensation for the control surface saturation and let the HSV smoothly track the command signals. Then, the improved sliding mode disturbance observer (ISMDO) is proposed to estimate unknown parameters and strong external disturbance as well as the unknown actuator fault. This method does not need the information of disturbance and the fault bounds and has fewer learning parameters, which makes it suitable for the real-time control. Finally, the simulation test of attitude control for the reentry HSV is conducted, and the results show the effectiveness and robustness of the proposed scheme.  相似文献   

8.
In this paper, we mainly concentrate on the control issue of a variable length drilling riser under condition of unknown disturbances and output constraint. The studied flexible drilling riser system with variable length, variable tension, variable speed and restricted boundary output is essentially a nonlinear distributed parameter system. For achieving the vibration suppression and ensuring the boundary output within the constrained range, an appropriate control scheme with output signal barrier is put forward by integrating boundary control method, barrier Lyapunov function with finite-dimensional backstepping technique, where disturbance observer is employed for coping with the boundary disturbance. Moreover, the Lyapunov’s synthetic method is applied for the steadiness research of the studied flexible drilling riser system, and the simulations are presented to display the usefulness of proposed control scheme.  相似文献   

9.
In this paper, a command filter-based adaptive fuzzy controller is constructed for a class of nonlinear systems with uncertain disturbance. By using the error compensation signals and fuzzy logic system, a command filter-based control strategy is presented to make that the tracking error converge to an any small neighborhood of zero and all closed-loop signals are bounded. In the design procedure, fuzzy logic system is employed to estimate unknown package nonlinear functions, which avoids excessive and burdensome computations. The control scheme not only resolves the explosion of complexity problem but also eliminates the filtering error in finite-time. An example has evaluated the validity of the control method.  相似文献   

10.
This paper deals with the distributed tracking control of a heat process having uncertain diffusivity and subject to a distributed disturbance whose L2 norm is bounded by a constant which is not known a priori. Under certain regularity assumptions on the disturbance and on the chosen reference profile, a distributed unit-vector control, with an adaptive magnitude, is designed which provides the asymptotic tracking of the reference. The logic governing the gain adaptation is gradient-based and monodirectional, i.e. the gain cannot decrease over time. Lyapunov arguments are invoked to support the convergence properties of the proposed scheme, whose performance are also investigated by means of computer simulations.  相似文献   

11.
This paper investigates entry guidance of a capsule for pinpoint landing on Mars. In this scenario, the capsule is subject to the external disturbances caused by the atmosphere that can result in control saturation, and then undesired landing errors. To this end, a new guidance scheme to satisfy entry constraints, high-accuracy landing at high elevation sites, is proposed. The technical contributions of this work are two-fold: first, in order to mitigate the effects caused by large disturbance, a function describing the joint constraints of bank angle and slacked height is proposed; based on the nonlinear model predictive control (NMPC), a new algorithm is developed, where the constraints of dynamics, bank angle, slacked height, are sufficiently considered and precisely modeled; second, a state-space observer to improve the prediction of disturbance is introduced, which can significantly improve the accuracy of landing performance. The numerical simulations show the feasibility and validity of the proposed scheme.  相似文献   

12.
In motor system control design, a single controller is usually employed to simultaneously control two or more motors for saving costs, which also achieves the computational simplification of control. In practical Hamiltonian systems control, more systems also need to be stabilized by a single controller under some working conditions. Thus, this paper studies simultaneous stabilization problem of two nonlinear Port-controlled Hamiltonian (PCH) systems with disturbances by a composite controller. Based on the Hamiltonian structure properties, two PCH systems are combined together to generate an augmented PCH system by utilizing output feedbacks firstly. Then, to estimate disturbances effectively, it is essential to design a nonlinear disturbance observer (NDOB) and the estimate is employed to feedforward compensate the effects of disturbances. Next, combining the output feedback part and the disturbance compensation part together, a simultaneous stabilization controller is developed. Subsequently, it is proved that the closed-loop system under the proposed controller is asymptotically stable. Finally, an example with simulations reveals that the proposed method is effective.  相似文献   

13.
In this paper, we consider output tracking for a class of MIMO nonlinear systems which are composed of coupled subsystems with vast mismatched uncertainties. First, all uncertainties influencing the performance of controlled outputs, which include internal unmodelled dynamics, external disturbances, and uncertain nonlinear interactions between subsystems, are refined into the total disturbance in the control channels of subsystems. The total disturbance is shown to be sufficiently reflected in the measured output of each subsystem so that it can be estimated in real time by an extended state observer (ESO) in terms of the measured outputs. Second, we decouple approximately the MIMO systems by cancelling the total disturbance based on ESO estimation so that each subsystem becomes approximately independent linear time invariant one without uncertainty and interaction with other subsystems. Finally, we design an ESO based output feedback for each subsystem separately to ensure that the closed-loop state is bounded, and the closed-loop output of each subsystem tracks practically a given reference signal. This is completely in comply with the spirit of active disturbance rejection control (ADRC). Some numerical simulations are presented to demonstrate the effectiveness of the proposed output feedback control scheme.  相似文献   

14.
Strap-down seeker is rigidly fixed onto the missile body, which results in detection information being coupled to the missile’s attitude and having a narrow field-of-view (FOV). During the terminal guidance flight, attitude adjustment of the missile may lose the target’s lock and reduce interception accuracy. Therefore, this paper investigates three-dimensional integrated guidance and control (IGC) under the constraints of the FOV and roll angle for skid-to-turn (STT) missile with strap-down seeker. A new low-order IGC model is constructed by establishing a second-order model of body line-of-sight (BLOS) angle based on strap-down decoupling theory and combining it with the second-order roll angle equation. Furthermore, a low-order fixed-time IGC scheme is developed using the integral barrier Lyapunov function (iBLF) to limit BLOS and roll angles. Fixed-time filter, which avoids the “complexity explosion” caused by conventional back-stepping technique, is utilized for obtaining virtual control command and its derivative. A fixed-time disturbance observer is introduced to compensate for the lumped disturbance. According to Lyapunov stability theory, it is proven that the proposed IGC scheme can make the closed-loop system converge within a fixed time. Finally, the effectiveness and robustness of the IGC scheme are verified by various numerical simulations.  相似文献   

15.
In this paper, a flatness-based adaptive sliding mode control strategy is presented to solve the trajectory tracking problem of a quadrotor. According to the differential flatness theory, the typical under-actuated quadrotor dynamics is transformed into a fully-actuated one. Based on this model, backstepping sliding mode controllers are designed to solve the trajectory tracking problem. To improve the robustness to disturbances, extended state observers are applied as a feedforward compensation of disturbances. Moreover, considering the high-order dynamics and possible instability caused by large observer gains, the adaptive method is applied to compensate for the estimation error. The effectiveness of the proposed control scheme is verified in simulations.  相似文献   

16.
In this paper, active disturbance rejection control (ADRC) based on a neural network has been investigated for the attitude control of the hypersonic vehicle (HV) with uncertain disturbances, which are regarded as a strongly time-varying, nonlinear, and coupled system. The structure of nonlinear state error feedback (NLSEF) with an Extended State Observer (NLSEF+ESO) utilized in ADRC is considered to have good disturbance resistance ability in engineering applications with less dependence on the mathematical model of the system. However, the strong coupling of the HV makes it complicated to separately design ADRC for each channel. In addition, the bandwidth and parameters of the ESO can seriously affect the performance of the ADRC, while jitter occurs when they are not well matched. A cascade active-rejection control scheme is designed by introducing the Radial Basis Function (RBF) Neural Network to substitute the ESO in ADRC, which mitigates the shortcoming of ADRC in addressing the control problems of the MIMO system with coupling disturbances. The NNESO can adapt well to disturbance characteristics through online training and fitting and can effectively reduce the jitter of the control. The stability of the NNESO is proved by Lyapunov stability theory, and the numerical simulations are presented to demonstrate the effectiveness of our theoretical results. In summary, the proposed NNESO-based cascade ADRC is an effective method for solving the problem of HV control with better disturbance resistance.  相似文献   

17.
This work mainly studies the position and attitude tracking control of a free-floating space robot. With the attitude represented in modified Rodrigues parameters (MRPs), a task-space controller with predefined-time stability is developed considering the external disturbance. The tuning parameters of a predefined-time controller can be formulated as functions of the prescribed upper bound of the stabilization time. Based on the backstepping technique and a novel predefined-time stabilizing function, a predefined-time control scheme is designed for the space robot system. Moreover, to avoid ’explosion of terms’, an auxiliary variable is introduced such that the controller is independent of the derivative of the virtual control law. Numerical simulations are presented to demonstrate the effectiveness of the proposed method.  相似文献   

18.
A novel offset-free trajectory tracking control strategy is proposed for a hypersonic vehicle under external disturbances and parameter uncertainties. In order to realize the real-time control for the hypersonic vehicle, the predictive control law is divided into the on-line design and off-line design. Unlike general nonlinear disturbance observer-based control which involves designing the disturbance compensation strategy, the influences of the disturbances on the velocity and altitude are attenuated by the direct feedback compensation (DFC). Particularly, the offset-free tracking feature is proved for the output reference signal. Simulations show that the real-time control can be realized for the hypersonic vehicle, the controls and angle of attack are all in their given constraint scopes, and the velocity and altitude can track the given references accurately even under mismatched disturbances.  相似文献   

19.
Control of micro gas turbine combined heating and power (MGT-CHP), i.e., cogeneration systems, is challenging because of large inertia, strong coupling, strict input constraints, nonlinearity, and complex disturbances. To overcome these problems, this paper develops an extended state observer (ESO) based stable predictive tracking control (SPTC) for MGT-CHP. Unlike traditional ESO-based control methods, ESO-SPTC guarantees overall optimality by using disturbance feedback compensation. A new discrete-time generalized ESO is developed for the ESO-SPTC to surmount higher-order disturbances and its bounded stability is demonstrated. Besides, the designed SPTC fully guarantees that the infinite horizon inputs fully satisfy the amplitude and rate constraints. The resulting ESO-SPTC can eliminate the impact of matched and unmatched disturbances in the output channel at a steady state. Simulation results on a numerical example and an 80 kW MGT-CHP verify the effectiveness of the control scheme.  相似文献   

20.
This paper presents an improved composite fuzzy learning control for uncertain electrically-driven robot manipulators with input delay and the external disturbances. In the framework of the backstepping algorithm, fuzzy systems are employed to approximate the unknown terms where the accuracy of fuzzy learning is also considered by defining prediction errors. With the aid of integral technique and the dynamic surface control, a variable is engendered for the system in such a way that the input-delayed robotic system is converted to the non-delayed robotic system. Besides, the command-filtered control is used to cope with the complexity explosion of the backstepping-based design. In order to improve the robust behavior of the control system, the proposed control scheme is equipped with disturbance observers (DOBs). Different from the previous works, the information of the input-delayed, the compensated error surfaces (obtained from the command-filtered approach), the prediction errors and the disturbance estimations (derived from DOBs) are unified to construct the proposed control framework. The stability of the overall system is verified by the Lyapunov theorem. The efficiency of the proposed concept is illustrated using various simulations for an electrically-driven robot manipulator in the presence of uncertainties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号