首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 91 毫秒
1.
In a recently published article in Cultural Studies of Science Education (Volume 6, Issue 2) titled, What does playing cards have to do with science? A resource-rich view of African American young men, Alfred Schademan (Cult Stud Sci Educ 6:361–380, 2011) examines the resources that African American young men learn through playing a card came called Spades. In his ethnographic study, he takes a resource-rich view of the players, highlights the science-related resources they demonstrate, and challenges deficit notions of these young men. Three Forum response papers complement Schademan’s research. The first is written by Nancy Ares, the second is coauthored by Allison Gonsalves, Gale Seiler, and Dana Salter, and the third is written by Philemon Chigeza. All three of these response papers elaborate on his points and emphasize issues inherent in working towards resource-rich views in science education. In this paper, I draw on all four papers to explore the possibilities in recognizing, highlighting, and accepting the resources that students bring as being resources for science learning.  相似文献   

2.
This study examined standard 6 and 8 (Standards 6 and 8 are the sixth and eighth years, respectively, of primary level schooling in Kenya.) students’ perceptions of how they use mathematics and science outside the classroom in an attempt to learn more about students’ everyday mathematics and science practice. The knowledge of students’ everyday mathematics and science practice may assist teachers in helping students be more powerful mathematically and scientifically both in doing mathematics and science in school and out of school. Thirty-six students at an urban school and a rural school in Kenya were interviewed before and after keeping a log for a week where they recorded their everyday mathematics and science usage. Through the interviews and log sheets, we found that the mathematics that these students perceived they used outside the classroom could be classified as 1 of the 6 activities that Bishop (Educ Stud Math 19:179–191, 1988) has called the 6 fundamental mathematical activities and was also connected to their perception of whether they learned mathematics outside school. Five categories of students’ perceptions of their out-of-school science usage emerged from the data, and we found that 4 of our codes coincided with 2 activities identified by Lederman & Lederman (Sci Child 43(2):53, 2005) as part of the nature of science and 2 of Bishop’s categories. We found that the science these students perceived that they used was connected to their views of what science is.  相似文献   

3.
In this article, I return to the interactions of Augusto and his teacher in an “English Learner Science” classroom in a demographically-transitioning US Midwest community (Richardson Bruna and Vann in Cult Stud Sci Educ 2:19–59, 2007) and further engage a class-first perspective to achieve two main conceptual objectives. First, I examine Augusto’s science education experience as a way of understanding processes Rouse (Towards a transnational perspective on migration: Race, class, ethnicity, and nationalism reconsidered. The New York Academy of Sciences, New York, 1992) refers to as “the disciplinary production of class-specific subjects” (p. 31). Coming from a subsistence farming community in rural Mexico to an industrialized meatpacking community in semi-rural Iowa, I describe how Augusto undergoes a change in his class identity (experiences a Class Transformation) that is not just reflected but, in fact, produced in his science class. Second, I examine the work Augusto does to resist these processes of disciplinary production as he reshapes his teacher’s instruction (promotes a class transformation) through specific transnational social capital he leverages as peer mediation. My overall goals in the article are to demonstrate the immediate relevance of a socio-historical, situated perspective to science teaching and learning and to outline domains of action for an insurgent, class-cognizant, science education practice informed by transnational social capital, like Augusto’s.  相似文献   

4.
In his December editorial on Michael Reiss, Kenneth Tobin (Cult Stud Sci Educ 3:793–798, 2008), raises some very important questions for science and science teachers regarding science education and the teaching of creationism in the classroom. I agree with him that students’ creationist ideologies should be treated not as misconceptions but as worldviews. Because of creationism’s peculiarly strong political links though, I argue that such discussion must address three critical and interconnected issues, including the uncertain state of teaching evolution in public schools nationally, the political convergence of the creationist political beliefs with bigoted worldviews, and creationism’s inherent contrariness to science and human progress. I suggest that we as science educators therefore not consider all sides to be equally right and to instead take side against the politics of creationism. I also argue that we need much more serious discussion on how to better teach science to students who hold creationist worldviews, and that science educators such as Reiss need to be part of that.
Konstantinos AlexakosEmail:

Konstantinos Alexakos   is an assistant professor in the School of Education at Brooklyn College (CUNY). He is a former New York City high school science teacher and a former NYC transit worker. His research interests include sociocultural issues especially fictive kinships among minority science students and perseverance and success.  相似文献   

5.
Indigenous environmental science education is a diverse, dynamic, and rapidly expanding field of research, theory, and practice. This article highlights, challenges, and expands upon key areas of discussion presented by Mack et al. (Cult Stud Sci Educ 7, 2012) as part of the forum on their article Effective Practices for Creating Transformative Informal Science Education Programs Grounded in Native Ways of Knowing. Key topics discussed include the integration of Western and Indigenous knowledge in educational programs, embodied approaches to Indigenous research, and further examples of practice from Canada and other regions of the world.  相似文献   

6.
In their articles, Ajay Sharma (Cult Stud Sci Educ, doi: 10.1007/s11422-017-9835-z, 2017) and Noel Gough (Cult Stud Sci Educ, doi: 10.1007/s11422-017-9834-0, 2017) shed light on the impact neoliberalism has on the teaching of science and suggest ways to ensure that science education remains critical and socially equitable. In this paper, I illustrate how their proposals influenced my instructional choices during the fall of 2016 in a course entitled Epistemology and Education.  相似文献   

7.
This paper presents data generated during a semester-long programme to support international students from countries in Melanesia and Asia embarking on masters research in education in a New Zealand university. All were scholarship recipients. The researcher-and facilitator-of the programme, was interested in documenting and understanding the nature of the students’ experience as they planned and wrote research proposals. The process of developing a research proposal, as one of the early stages of ‘becoming’ a researcher, highlighted a number of challenges for the six case study students. The challenges are viewed from a transition or ‘resituation’ perspective (Eraut in Stud Contin Educ 26(2): 247–74, 2004, 2008) rather than an adjustment one. A resituation perspective assumes that students brought with them “personal expertise, practical wisdom and tacit knowledge” (Eraut 2008, p. 42) which needed to be reconciled with what was demanded of them by different aspects of the research planning process. The resituation challenges experienced by the students included situating a perceived problem or issue in the research literature; reconciling personal research goals with the limitations of one’s own agency as a researcher; integrating new learning with research goals; and reconciling the new role or identity as a researcher with the previous role as colleague or community member. The paper presents a case for providing a context for postgraduate students in which explicit recognition of what they bring to the research task, and acknowledgement of the resituation challenges can take place.  相似文献   

8.
A hallmark of current science education reform involves teaching through inquiry. However, the widespread use of inquiry-based instruction in many classrooms has not occurred (Roehrig and Luft in Int J Sci Educ 26:3–24, 2004; Schneider et al. in J Res Sci Teach 42:283–312, 2005). The purpose of this study was to investigate the impact of a professional development program on middle school science teachers’ ability to enact inquiry-based pedagogical practices. Data were generated through evaluation of teacher practice using the Reformed Teaching Observation Protocol (RTOP) (Sawada et al. in School Sci Math 102:245–253, 2002) at three distinct junctures, before, during, and after the professional development treatment. Analysis of teacher-participant post-institute reflections was then utilized to determine the perceived role of the various institute components. Statistical significant changes in RTOP scores indicated that the teachers were able to successfully transfer the enactment of the inquiry-based practices into their classrooms. The subsequent discussion provides connection between these pedagogical changes with use of professional development strategies that provide a situated learning environment.  相似文献   

9.
The purpose of this study was to assess differences between Nigerian junior and senior preservice teachers’ science teaching efficacy beliefs. Data in this study were collected from a total number of 221 preservice teachers enrolled in junior and senior secondary science teacher education programs in Nigeria using Science Teaching Efficacy Belief Instrument (STEB-B) (Enoch and Riggs in Sci Educ 74:625–638 1990). Results indicated that junior secondary preservice teachers were as efficacious as their senior secondary preservice teachers on the two dimensions of STEB-B. In addition, analyses did not reveal any significant gender differences on the two dimensions of STEB-B.  相似文献   

10.
The construct of identity has been used widely in mathematics education in order to understand how students (and teachers) relate to and engage with the subject (Kaasila, 2007; Sfard & Prusak, 2005; Boaler, 2002). Drawing on cultural historical activity theory (CHAT), this paper adopts Leont’ev’s notion of leading activity in order to explore the key ‘significant’ activities that are implicated in the development of students’ reflexive understanding of self and how this may offer differing relations with mathematics. According to Leont’ev (1981), leading activities are those which are significant to the development of the individual’s psyche through the emergence of new motives for engagement. We suggest that alongside new motives for engagement comes a new understanding of self—a leading identity—which reflects a hierarchy of our motives. Narrative analysis of interviews with two students (aged 16–17 years old) in post-compulsory education, Mary and Lee, are presented. Mary holds a stable ‘vocational’ leading identity throughout her narrative and, thus, her motive for studying mathematics is defined by its ‘use value’ in terms of pursuing this vocation. In contrast, Lee develops a leading identity which is focused on the activity of studying and becoming a university student. As such, his motive for study is framed in terms of the exchange value of the qualifications he hopes to obtain. We argue that this empirical grounding of leading activity and leading identity offers new insights into students’ identity development.  相似文献   

11.
This longitudinal study of middle school science teachers explored the relationship between effective science instruction, as defined by the National Science Education Standards (NRC in National science education standards. National Academy Press, Washington, DC, 1996), and student achievement in science. Eleven teachers participated in a three year study of teacher effectiveness, determined by the LSC Classroom Observation Protocol (Horizon Research, Inc. in Local Systemic Change Classroom Observation Protocol. May 1, 2002) and student achievement, which was assessed using the Discovery Inquiry Test in Science. Findings in this study revealed the positive impact that effective science teachers have on student learning, eliminating achievement gaps between White and Non-White students. Case studies of three teachers, both effective and ineffective explore the beliefs and experiences that influence teachers to change, or not to change practice. This study provides justification for teaching science effectively to narrow achievement gaps in science and provides insight to stakeholders in science education as to how to support teachers in becoming more effective, through addressing existing teacher beliefs and providing experiences that challenge those beliefs.  相似文献   

12.
Monk and Osborne (Sci Educ 81:405–424, 1997) provide a rigorous justification for why history and philosophy of science should be incorporated as an integral component of instruction and a model for how history of science should be used to promote learning of and about science. In the following essay we critique how history of science is used on this model, and in particular, their advocacy of a direct comparison of students’ conceptions of scientific phenomena with those of past scientists. We propose instead an alternative approach that promotes a more active engagement by inviting students to engage in the sort of reasoning that led past scientists to reach insights about scientific phenomena. As an example we describe in detail two lesson plans taken from an eight-class unit developed with reference to the history of research on sickle-cell anemia. These lessons demonstrate how an open-ended, problem-solving approach can be used to help students deepen their understanding of science. Throughout the unit students are invited to explicitly and reflectively consider the implications of their reasoning about the disease for their understanding of nature of science issues. The essay draws attention to how this alternative approach actually more closely aligns with the constructivist rationale Monk and Osborne have articulated. It concludes with a brief summary of empirical research demonstrating the efficacy of this approach.
David W. RudgeEmail:
  相似文献   

13.
There have been substantial reform efforts in science education to improve students’ understandings of science and its processes and provide continual support for students becoming scientifically literate (AAAS, Benchmarks for science literacy, Oxford University Press, New York, 1993; NRC, National Academy Press, Washington, DC, 1996; NSTA, NSTA position statement: The nature of science, , 2000). Despite previous research, it is still unclear whether young children are actually developmentally ready to conceptualize the ideas that are recommended in the reforms (Akerson and Volrich, J Res Sci Teach 43:377–394, 2006). The purpose of this study was to explore how explicit-reflective instruction could improve young students’ understanding of NOS. During an informal education setting, the authors taught NOS aspects using explicit-reflective instruction. Overall the students participating in the program improved their understanding of the target aspects of NOS through use of explicit reflective instruction. However, the levels of improvement varied across different aspects. Students improved the most in their understanding of the tentative nature of science and the roles of observation in scientific work, although there was still some confusion regarding the distinction between observation and inference. More work needs to be done exploring these specific topics and the role explicit reflective practice can play in identifying the particular problems students have in distinguishing these constructs.  相似文献   

14.
This study draws upon a qualitative case study to investigate the impact of the high-stakes test environment on an elementary teacher’s identities and the influence of identity maintenance on science teaching. Drawing from social identity theory, I argue that we can gain deep insight into how and why urban elementary science teachers engage in defining and negotiating their identities in practice. In addition, we can further understand how and why science teachers of poor urban students engage in teaching decisions that accommodate school demands and students’ needs to succeed in high-stakes tests. This paper presents in-depth experiences of one elementary teacher as she negotiates her identities and teaching science in school settings that emphasize high-stakes testing. I found that a teacher’s identities generate tensions while teaching science when: (a) schools prioritize high-stakes tests as the benchmark of teacher success and student success; (b) activity-based and participatory science teaching is deemphasized; (c) science teacher of minority students identity is threatened or questioned; and (d) a teacher perceives a threat to one’s identities in the context of high stakes testing. Further, the results suggest that stronger links to identities generate more positive values in teachers, and greater possibilities for positive actions in science classrooms that support minority students’ success in science.
Bhaskar UpadhyayEmail:

Bhaskar Upadhyay   is an assistant professor of science education at the University of Minnesota, Twin Cities. His research focuses on equity and social justice issues in science education; sociocultural influences on teaching and learning of science; and issues of teaching and learning science to immigrant children and parents. He teaches courses concerning equity, diversity, social justice, and multicultural education issues in science teaching and learning.  相似文献   

15.
We examine the argumentative structure of Hwang et al.’s (2004) paper about human somatic cell nuclear transfer (SCNT, or ‘therapeutic cloning’), contrasted with four Journalistic Reported Versions (JRV) of it, and with students’ summaries of one JRV. As the evaluation of evidence is one of the critical features of argumentation (Jiménez-Aleixandre 2008), the analysis focuses on the use of evidence, drawing from instruments to analyze written argumentation (Kelly et al. 2008) and from studies about the structure of empirical research reports (Swales 2001). The objectives are: 1) To examine the use of evidence and the argumentative structure of Hwang et al.’s Science, 303: 1669–1674 (2004) original paper in terms of the criteria: a) pertinence of the evidence presented to the claims; b) sufficiency of the evidence for the purpose of supporting the claims; and c) coordination of the evidence across epistemic levels. 2) To explore how the structure of Hwang’s paper translates into the JRV and into university students’ perceptions about the evidence supporting the claims. The argumentative structure of Hwang’s paper is such that its apparently ostensible main claim about NT constitutes a justification for a second claim about its therapeutic applications, for which no evidence is offered. However, this second claim receives prominent treatment in the JRV and in the students’ summaries. Implications for promoting critical reading in the classroom are discussed.  相似文献   

16.
Chemistry students’ explanations of ionisation energy phenomena often involve a number of non-scientific or inappropriate ideas being used to form causality arguments. Research has attributed this to many science teachers using these ideas themselves (Tan and Taber, in J Chem Educ 86(5):623–629, 2009). This research extends this work by considering which atomic models are used in pre-service teachers’ explanations and how that relates to the causality ideas expressed. Thirty-one pre-service teachers were interviewed. Each was asked to describe and explain four different atomic representations (Rutherford, Electron cloud micrograph, Bohr and Schr?dinger types) in as much detail as they could. They also provided an explanation for the subsequent ionisation energy values for an oxygen atom and identified which representations were helpful in explaining the values. Significantly, when pre-service teachers only used Bohr type representations, they did not use repelling electron ideas in their explanations. However, arguments that were based on electron–electron repulsion used features from Schr?dinger type atoms. These findings suggest that many pre-service teachers need to develop their atomic modelling skills so that they select and use models more expertly and that subsequent ionisation explanations offer a context in which to explore different atomic models’ limitations and their deployment as explanatory resources.  相似文献   

17.
The purpose of the study is to compare problem based learning (PBL) and lecture-based learning (LBL) in Hong Kong secondary students’ science achievement. Secondary One students were divided into two groups: group A (n = 37), was taught two topics: “Human Reproduction” and “Density” through PBL; group B (n = 38) was taught the same topics by LBL. Multiple choice questions and short structured response items were used to assess students’ academic performance. Pre and post tests were categorized into three domains: knowledge, comprehension and application according to Bloom’s Taxonomy (Bloom 1956). The results of this study suggest first that PBL is at least as effective as LBL in gaining the knowledge required to achieve the syllabus’ learning objectives; secondly, the PBL group shows a significant improvement in students’ comprehension and application of knowledge over an extended time. Seemingly, PBL is favored for knowledge retention compared to a more conventional teaching approach, by these early adolescent children in Hong Kong. An ongoing longitudinal study on students’ interactions will further determine whether students taught through PBL develop improved learning in relation to high order skills, in a local situation which still tends to focus on factual recall but where higher skills are being demanded by systemic reform.  相似文献   

18.
In the first three sections of this paper we comment on some of the ideas developed in the forum papers, pointing out possible misunderstandings and constructing new explanations that clarify arguments we made in the original article. In the last section we expand the discussion raised in the original paper, elaborating on the limits of the use of Marxist approaches to sociocultural studies of science education. Following insights suggested by Loxley et al. (Cult Stud Sci Edu. doi:10.1007/s11422-013-9554-z, 2013) and detailed by Zuss (Cult Stud Sci Edu, 2014) on the commodification of knowledge, we sketch an analysis of how knowledge is transformed into capital to understand why contemporary scholars are likely to be engaged in a relation of production that resembles capitalist exploitation.  相似文献   

19.
In this article, we, a multivocal-thinking-assemblage, trouble what we feel is the dogmatic image of thought in science education. Beginning with Lars Bang’s (Cult Stud Sci Educ, 2017) dramatic and disruptive imagery of the Ouroboros as a means to challenge scientific literacy we explore the importance of dreams, thinking with both virtual and actual entities, and immanent thinking to science education scholarship. Dreaming as movement away from a dogmatic image of thought takes the authors in multiple directions as they attempt to open Deleuzian horizons of difference, immanence, and self-exploration.  相似文献   

20.
A research-based framework for teaching science is a heuristic tool used to help preservice teachers conceptualize many complexities of teaching while making explicit the strategy to use a research-based body of professional knowledge to inform instructional decision-making (Clough, 2003, Paper presented at the annual meeting of the Association for the Education of Teachers in Science, St. Louis, MO). Elementary preservice teachers frequently struggle to apply this knowledge to classroom decisions (Madsen, 2002, Paper presented at the annual meeting of the North Central Association for the Education of Teachers of Science, Bettendorf, IA). This study examined the effects of using a video case-analysis within an elementary science methods course focused on the development of a research-based framework. Students in two course sections completed a unit plan, and students in one section completed the video analysis. Video analysis students’ performance on an oral defense with the instructor was compared with oral defense performance from students in the unit plan group. Video analysis students outperformed their peers on questions related to how learning theories influence decisions of selecting content, explaining the use of questioning, and the use of self assessment strategies. Despite these differences, students in both groups still perceive teaching as primarily accomplished through activities and have difficulties understanding the critical role of the teacher in promoting student goals. This study raises issues regarding teachers’ knowledge development during preservice experiences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号