首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
有这样一道题,已知:如图1,O是ABC内任意一点,试说明:∠AOB=∠1+∠2+∠C(留给同学们思考)。我们可以由这个图形中抽出“”,它形如圆规状,就把它叫做“规形”(如图2),由上可知∠BOC=∠A+∠B+∠C就是“规形”的性质。现就用“规形”这一性质来求角度之和。∴∠A+∠B+∠C+∠D+∠E+∠F=360°.例2如图4,求∠A+∠B+∠C+∠D+∠E的度数。解:由“规形”图可知,ABOC为“规形”,由性质得∠1=∠A+∠B+∠C又∵∠1=∠2而∠2+∠D+∠E=180°∴∠A+∠B+∠D+∠E=180°.例3如图5,求∠A+∠B+∠C+∠D+∠E的度数解:由“规形”图可知,ACOD为“规…  相似文献   

2.
1.基本知识(1)三角形内角和等于180°.(2)n边形内角和等于 (n-2)·180°.2.基本事实(1)在图1中,易证图1∠A+∠B=∠C+∠D.(2)在图2中,易证∠A+∠B+∠C =∠D+∠E+∠F. 按照以上知识,通过添加辅助线,就可以较容易地求出某些一笔画图形中的多角和.  相似文献   

3.
不少几何题,可由题设及图形特征,通过边计算边推理进行证明。这是几何证明中常常采用的一种证题方法。 例1 已知:如图1,在△ABC中,∠C=90°,D和E是斜边AB上的点,且AD=AC,BE=BC。求证:∠ECD=45°。证明 ∵ AD=AC,BE=BC。 ∴ ∠1+∠2=∠4=∠3+∠B,① ∠1+∠3=∠5=∠2+∠A,②  相似文献   

4.
证法 5 :如图 5 ,作AC的延长线CE ,则点C处有一周角 ,即∠BCE+∠DCE+∠BCD =36 0° .∵∠BCE =∠ 1+∠B ,∠DCE=∠ 2 +∠D ,∴ (∠ 1+∠B) +(∠ 2 +∠D) +∠BCD =36 0° ,即 ∠BAD +∠B+∠BCD+∠D =36 0° .证法 6 :如图 6 ,若延长BA、CD相交于点E ,则有∠B +∠C =∠ 1+∠ 2 ,∴∠BAD+∠B +∠C+∠CDA=(180°-∠ 1) +∠B +∠C+(180°-∠ 2 )=36 0°- (∠ 1+∠ 2 ) +(∠B+∠C)=36 0°- (∠ 1+∠ 2 ) +(∠ 1+∠ 2 )=36 0° .证法 7:如图 7,若CD∥AB时 ,过点D作DE∥AB交BC于点E ,则∠A =180° -∠ 1,∠B =∠ 2 ,∴…  相似文献   

5.
本文介绍凹四边形的一个性质的四种证法及应用,供初一或初二学生学习时参考.一、凹四边形性质如图1,试说明∠BOC=∠A+∠B+∠C.解1如图2,延长BO交AC于D,则由三角形外角性质得∠BOC=∠C+∠ODC,∠ODC=∠A+∠B.所以∠BOC=∠A+∠B+∠C.  相似文献   

6.
初中《几何》中有这样一个基本图形:如图1,D是AB上一点,E是AC上一点,BE、CD相交于点F.由这个基本图形我们可以得到这样的结论:∠BFC=∠B ∠A ∠C.证明这一结论成立的方法很多,现给出两种常见方法:方法一:连结AF并延长到M,则有∠BFM=∠B ∠BAM,∠CFM=∠C ∠CAM,∴∠BFC=∠BFM ∠CFM=∠B ∠BAC ∠C.方法二:由∠BFC=∠B ∠BDC,∠BDC=∠A ∠C,有∠BFC=∠B ∠A ∠C.图1及上述结论在解题中有着广泛的应用.现举几例说明.例1如图2,求∠A ∠B ∠C ∠D ∠E的度数.解:如图2,设BD与CE交于点F,由本文中基本图形导出的结论…  相似文献   

7.
例1如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,∠A与∠1+∠2之间有一种数量关系始终保持不变郾请试着找一找这个规律,你发现的规律是()郾(A)∠A=∠1+∠2(B)2∠A=∠1+∠2(C)3∠A=∠1+∠2摇摇(D)3∠A=2(∠1+∠2)(2003年北京市海淀区中考题)解延长BE、CD交于A',则∠A'=∠A郾在四边形ADA'E中,∠A+∠ADA'+∠A'+∠A'EA=360°.又∠2+∠ADA'=180°,∠A'EA+∠1=180°,∴∠2+∠ADA'+∠A'EA+∠1=360°郾∴∠A+∠A'=∠1+∠2,即摇2∠A=∠1+∠2郾故选(B)郾评析将任意三角形纸片轻轻一折,却折出了相关角与角之间的规律郾…  相似文献   

8.
在数学课上,杨老师出了一个练习题.例1如图1,已知∠B=∠C=30°,∠A=40°,求∠D(图1中所示的钝角)的度数.小毛第一个举手发言:“连结B、C,如图2.因为△ABC的内角和为180°,所以∠DBC+∠DCB=180°-30°×2-40°=80°;又因为△DBC的内角和为180°,所以∠D=180°-∠DBC-∠DCB=180°-80°=100°”.杨老师微笑着点了点头,表示赞同,又问:“还有什么解法?”聪明的小倪举手.“延长BD交AC于E,如图3,因为∠BDC=∠C+∠CED,∠CED=∠A+∠B,所以∠D=∠C+∠A+∠B=100°”.小倪答完,同学们不禁鼓掌,杨老师摸着下巴不住地点头小侯在旁边不…  相似文献   

9.
学数学,既要善于抓住不变的根本,又要善于灵活地在变化中认识、处理和解决问题。三角形的内角和定理及其推论常常是几何问题中的隐含条件,合理和灵活地应用它们,也常常能使几何题达到一题多解和一题多变的效果。图1一、一题多解例如图1,E为△ABC内一点,求证:(1)∠AEB=∠1+∠2+∠C·(2)∠AEB>∠C·解题思路1:充分利用三角形内角和定理证法1:如图2(1)∵∠1+∠2+∠C+∠3+∠4=180°∴∠1+∠2+∠C=180°-(∠3+∠4)∵在△AEB中,∠AEB=180°-(∠3+∠4)图2∴∠AEB=∠1+∠2+∠C(2)∵∠AEB=∠1+∠2+∠C∴∠AEB-∠C=∠1+∠2>0∴∠AEB>∠…  相似文献   

10.
下面是初一遇到的一例折纸问题,运用数学变换思想,通过翻折的程度、角度和位置的不同铺展开来,开阔思维.例题如图1,把长方形纸条ABCD的顶点D折叠到边BC图1上,探索图1中∠1与∠2的关系.解因为纸条ABCD是长方形,所以AD∥BD′,∠1=∠D′ED.折叠后得D′E∥C′F,∠D′E F=∠FED,所以∠2+∠D′EF=180°,即2∠2+2∠D′EF=360°,所以2∠2+∠D′ED=360°,所以∠1+2∠2=360°.假如上题作如下折叠变化:将长方形纸条ABCD翻折如图2,探索图2中∠1与∠2的关系,是否还有上述结论呢?图3分析通过观察发现,图3中∠2比图2中∠2正好少了90°,可…  相似文献   

11.
运用三角形内角和定理及其推论,可以求一类特殊图形中的多角和.如图1中的∠A+∠B+∠C+∠D+∠E,图2中的∠A、∠B、∠C、∠D、∠E、∠F的和等.求这类图形中几个角的和可采用如下三种方法.  相似文献   

12.
《时代数学学习》2005,(12):41-41
图1如图1,连结CD,将△ACD以D为旋转中心顺时针旋转60°到△BC′D,连接CC′则∠C′DB=∠CDA,CD=C′D,BC′=AC=b,∴∠C′DC=∠BDA=60°.∴△CDC′是等边三角形,∴CC′=CD.∴在△CBC′中,CC′≤CB+C′B=a+b.∴CD≤a+b.当C′,B,C在同一条直线上时,CD取最大值a+b.这时∠DBC′+∠DBC=180°.又∠D B C′=∠D A C,∠D B A=∠DAB=60°,∠BCA+∠CBA+∠CAB=180°,∴∠DAC+∠DBC=180°,∴∠CBA+∠CAB=60°,∴∠ACB=120°.故当∠ACB为120°时,CD取最大值,最大值为a+b.问题2.10参考答案…  相似文献   

13.
在解圆的有关问题时,若能巧妙地作出圆的直径,将能获得简捷的解题思路,现举数例如下.例1(2005年宁波市)如图1,△ABC内接于⊙O,∠B=30°,AC=2cm.⊙O的半径为.解:连AO且延长交⊙O于D,连CD,则∠ACD=90°,∠D=∠B=30°,所以AD=2AC=2×2=4,所以⊙O的半径为2cm.例2(2005年自贡市)如图2,P是⊙O的弦CB延长线上一点,点A在⊙O上,且∠BAP=∠C.求证:PA是⊙O的切线.证明:作⊙O的直径AD,连BD,则∠C=∠D,∠ABD=90°,即∠D+∠BAD=90°,所以∠C+∠BAD=90°.因为∠C=∠PAB,所以∠BAD+∠PAB=90°,即AP⊥AD,所以PA为⊙O的切线.例3(…  相似文献   

14.
学习数学,特别是解题时,对习题进行变式,举一反三,常常收到事半功倍的效果.下面给同学们介绍一下数学习题的几种简单变式:一、把题中的部分题设与结论交换位置例:已知:如图1,AB∥CD,请说明∠BED=∠B+∠D成立的理由.解:过点E作EF∥AB,因为AB∥CD,所以AB∥CD∥EF,所以∠BEF=∠B,∠FED=∠D,所以∠BEF+∠FED=∠B+∠D,即∠BED=∠B+∠D.本题也可以延长BE交CD于点G,再根据平行线的性质及三角形的性质,也可以证出.变式一已知:如图1,∠BED=∠B+∠D,请说明AB∥CD成立的理由.本题是将例题中的题设与结论交换位置,解法如下.过点E作EF∥AB,所以∠BEF=∠B,因为∠BED=∠B+∠D,所以∠BEF+∠FED=∠B+∠D,所以  相似文献   

15.
有关三角形的角度计算是三角形一章中重要问题之一,解决这类问题的方法虽因题而异,但利用列方程求解不失为一种好方法。现举几例加以说明. 例1 已知:如图1,在△ABC中,AB=AC,点D在AC上且BD=BC=AD,求△ABC各角的度数. 解设∠A=x°,∵AD=BD, ∴∠ABD=∠A=x°,∵∠BDC=∠ABD+∠A,∴∠BDC=2x°, ∵AB=AC,BD=BC,∴∠BDC=∠C=∠ABC=2x°. ∵∠A+∠ABC+∠ACB=180°, 即x+2x+2x=180°,∴x=36°∴△ABC中,∠A=36°,∠ABC=∠C=72°, 例2 已知:如图2,在△ABC中,AB=BD=AC,AD=CD,求△ABC各角的度数.解:设∠B=x°,∵AB=AC,AD=CD,∴∠C=∠DAC=∠B=x°,∴∠ADB=∠C+∠DAC=2x°,∵AB=BD,∴∠BAD=∠ADB=2x°,  相似文献   

16.
一种纯几何证明方法。证明过程如下: 设△ABC中各边BC,AC和AB的长分别是a、b和c,o为内切圆之圆心,D,E,F均为切点,在BC的延长线上截取CH=AF,连BO,作OK⊥BO交BC于L点,又作CK⊥BC交OK于K点,连BK,因∠BOK=∠BCK=Rt∠,故B,K,C,O四点共圆,连CO则,∠COB+∠BKC=180°,又因∠1+∠2+∠3=90°,∠3+∠AOF=90°,所以∠1+∠2=∠AOF,∠COB+∠AOF=180°,于是  相似文献   

17.
在进行有关梯形的边、角、面积等计算和论证问题时,常常需要添加辅助线,将梯形问题转化为三角形、平行四边形、矩形等特殊图形问题.下面介绍六种常见辅助线的添加方法.1平移一腰过梯形的一个顶点作一腰的平行线,通过平移腰,将梯形转化为三角形和平行四边形,利用三角形和平行四边形的性质,并结合题目条件,达到计算或证明的目的.图1例1如图1,在梯形ABCD中,AB∥CD,∠ADC=2∠B,AD=a,CD=b,求AB的长.解过D作DE∥BC,交AB与点E,则∠DEA=∠B,四边形DEBC是平行四边形,故BE=CD=b,∠EDC=∠B,由∠ADC=2∠B,得∠ADE=∠AED,因而AE=AD=a,所以AB=AE+BE=a+b.2平移两腰过梯形的上底上的一点作两腰的平行线,将梯形转化为一个三角形和两个平行四边形,再利用三角形和平行四边形的性质,结合题目条件,来证明(或计算).图2例2如图2,在梯形ABCD中,AD∥BC,M、N分别为上、下底的中点,且∠B+∠C=90°.求证:MN=12(BC-AD).证明过点M作ME∥AB交BC于点E,作MF∥CD交BC于点F,则∠MEC=∠B,∠MFB=∠C,∵∠B+∠C=90°,∴∠MEC+∠...  相似文献   

18.
联想与解题     
我们拿到一个数学题后,一般都是结合审题,联想有关的定义和公理,联想定理,公式和法则去寻求解题的方法。例1 如图:求证∠A+∠B+∠C+∠D+∠E=180°分析:这是一个图形性质的证明题。要证∠A+∠B+∠C+∠D+∠E=180°,可以联想表示180°的图形只有平角和三角形的内角和。再看已知条件,显然利用平角困难,只有考虑三角形的内角和,那么就要有一个角代替两个角和的问题,很自然地联想到三角形的外角定理,由此问题得证。  相似文献   

19.
三角形的内角和定理及推论有着广泛的应用,现归类举例说明. 一、求角度的大小例1 在△ABC中,若∠A:∠B:∠C=1:2:3,则∠C= ——. 分析与解:依题意,不妨设∠A=x°,则∠B=2x°,∠C=3x°,由三角形内角和定理知x+2x+3x=180°,即x=30°,故∠C=3°=90°. 例2 如图1,∠α=125°,∠1=50°,则∠β的度数是——. 分析:易求得∠2=55°,由推论2知∠β=∠1+∠2=50°+55°-105°  相似文献   

20.
证明∵△ABF、△CDB、△EFD是等腰三角形,且腰长相等.∠A+∠C+∠E=21(6-2)×360°×21=360°.所以将顶点放在一起可组成一个新三角形.显然,新三角形与△BDF全等.∵ST=SD=EF=ED=a,∴四边形SDEF是菱形.同理,四边形SFAB、SBCD也是菱形.于是,有EF∥SD∥BC,ED∥SF∥BA.∴∠B=∠E.同理,∠A=∠D,∠C=∠F.问题3·10答案  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号